A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 本題考查的知識點是簡單的線性規(guī)劃,我們可以先畫出足約束條件$\left\{\begin{array}{l}x≤a\\ y≤2\\ x+y≥2\end{array}\right.$的平面區(qū)域,再根據(jù)目標(biāo)函數(shù)z=x+2y的最大值是6,求出點的橫坐標(biāo)即可.
解答 解:滿足約束條件$\left\{\begin{array}{l}x≤a\\ y≤2\\ x+y≥2\end{array}\right.$的平面區(qū)域如下圖:
∵目標(biāo)函數(shù)z=x+2y的最大值是6,
可得$\left\{\begin{array}{l}{x+2y=6}\\{y=2}\end{array}\right.$,可得A(2,2).
∴當(dāng)x=2,y=2時,Z取最大值6,
A(2,2)在直線x=a上,可得a=2,
故選:A.
點評 用圖解法解決線性規(guī)劃問題時,分析題目的已知條件,找出約束條件和目標(biāo)函數(shù)是關(guān)鍵,可先將題目中的量分類、列出表格,理清頭緒,然后列出不等式組(方程組)尋求約束條件,并就題目所述找出目標(biāo)函數(shù).然后將可行域各角點的值一一代入,最后比較,即可得到目標(biāo)函數(shù)的最優(yōu)解.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5cm | B. | 6cm | C. | 7cm | D. | 8cm |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 17π | B. | 18π | C. | 20π | D. | 28π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{6}-\sqrt{2}}{8}$ | B. | $\frac{\sqrt{2}+\sqrt{6}}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com