9.某空調(diào)專賣(mài)店試銷A、B、C三種新型空調(diào),銷售情況如表所示:
 第一周  第二周第三周  第四周第五周 
 A型數(shù)量(臺(tái)) 11 10 15 A4 A5
 B型數(shù)量(臺(tái)) 9 12 13 B4 B5
 C型數(shù)量(臺(tái)) 15 12C4  C5
(1)求A型空調(diào)前三周的平均周銷售量;
(2)為跟蹤調(diào)查空調(diào)的使用情況,根據(jù)銷售記錄,從前三周售出的所有空調(diào)中隨機(jī)抽取一臺(tái),求抽到的空調(diào)不是B型且不是第一周售出空調(diào)的概率;
(3)根據(jù)C型空調(diào)前三周的銷售情況,預(yù)估C型空調(diào)五周的平均周銷售量為10臺(tái),當(dāng)C型空調(diào)周銷售量的方差最小時(shí),求C4,C5的值.
(注:方差s2=$\frac{1}{n}$[(x${\;}_{1}-\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為x1,x2,…,xn的平均數(shù))

分析 (1)由銷售情況表能求出A型空調(diào)前三周的平均周銷售量.
(2)設(shè)抽到的空調(diào)不是B型且不是第一周售出的空調(diào)為事件P1,由等可能事件概率計(jì)算公式能求出抽到的空調(diào)不是B型且不是第一周售出空調(diào)的概率.
(3)先求出c4+c5=15,再求出S2=$\frac{1}{5}$[2(${c}_{4}-\frac{15}{2}$)2+$\frac{91}{2}$],由此能求出當(dāng)C型空調(diào)周銷售量的方差最小時(shí),C4,C5的值.

解答 解:(1)A型空調(diào)前三周的平均周銷售量:
$\overline{x}$=$\frac{11+10+15}{5}$=12臺(tái).
(2)設(shè)抽到的空調(diào)不是B型且不是第一周售出的空調(diào)為事件P1,
則P1=$\frac{10+15+8+12}{35+30+40}$=$\frac{3}{7}$.
(3)∵C型空調(diào)平均周銷售量為10臺(tái),
∴c4+c5=10×5-15-8-12=15,
又S2=$\frac{1}{5}$[(15-10)2+(8-10)2+(12-10)2+(c4-10)2+(c5-10)2],
化簡(jiǎn),得S2=$\frac{1}{5}$[2(${c}_{4}-\frac{15}{2}$)2+$\frac{91}{2}$],
∵c4∈N,∴當(dāng)c4=7或c4=8時(shí),S2取得最小值,
∴當(dāng)$\left\{\begin{array}{l}{{c}_{4}=7}\\{{c}_{5}=8}\end{array}\right.$或$\left\{\begin{array}{l}{{c}_{4}=8}\\{{c}_{5}=7}\end{array}\right.$時(shí),S2取得最小值.

點(diǎn)評(píng) 本題考查平均數(shù)、概率的求法,考查方差的求法及應(yīng)用,是中檔題,解題時(shí)要認(rèn)真審題,注意方差公式的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.先后擲骰子兩次,落在水平桌面后,記正面朝上的點(diǎn)數(shù)分別為x,y,設(shè)事件A為“x+y為偶數(shù)”,事件B為“x≠y”,則概率P(B|A)=( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{2}$,其上下頂點(diǎn)分別為C1,C2,點(diǎn)A(1,0),B(3,2),AC1⊥AC2
(1)求橢圓E的方程及離心率;
(2)點(diǎn)P的坐標(biāo)為(m,n)(m≠3),過(guò)點(diǎn)A任意作直線l與橢圓E相交于點(diǎn)M,N兩點(diǎn),設(shè)直線MB,BP,NB的斜率依次成等差數(shù)列,探究m,n之間是否滿足某種數(shù)量關(guān)系,若是,請(qǐng)給出m,n的關(guān)系式,并證明;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.設(shè)P是曲線2x2-y2=1上的一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),M為線段OP的中點(diǎn),則點(diǎn)M的軌跡方程為8x2-4y2=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.運(yùn)行如圖所示的程序框圖,輸出的S=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}的首項(xiàng)a1=1,且an+1=an+2n+1.
(1)求{an}的通項(xiàng)公式;
(2)若bn=$\frac{2}{{a}_{n}+2n}$(n∈N*),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,在三角形ABC中,AB=x,BC=1,O是AC的中點(diǎn),∠BOC=45°,記點(diǎn)C到AB的距離為h(x).
(1)求h(x)的表達(dá)式,并注明x的取值范圍;
(2)求h(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且2ccosB=2a+b,若△ABC的面積為S=$\frac{{\sqrt{3}}}{12}$c,則ab的最小值為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.?dāng)?shù)列{an}滿足a1=1,an•an-1+2an-an-1=0(n≥2),則使得ak>$\frac{1}{2016}$的最大正整數(shù)k為( 。
A.5B.7C.8D.10

查看答案和解析>>

同步練習(xí)冊(cè)答案