17.設(shè)P是曲線2x2-y2=1上的一動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),M為線段OP的中點(diǎn),則點(diǎn)M的軌跡方程為8x2-4y2=1.

分析 設(shè)P(x,y),M(x0,y0),根據(jù)中點(diǎn)坐標(biāo)公式,利用代入法進(jìn)行化簡(jiǎn)即可.

解答 解:設(shè)P(x,y),M(x0,y0),因?yàn)镸是線段OP的中點(diǎn),
則有$\left\{\begin{array}{l}{x_0}=\frac{x}{2}\\{y_0}=\frac{y}{2}\end{array}\right.⇒\left\{\begin{array}{l}x=2{x_0}\\ y=2{y_0}\end{array}\right.$,
所以$2×{(2{x_0})^2}-{({y_0})^2}=1$,即$8x_0^2-y_0^2=1$,
故答案為8x2-4y2=1.

點(diǎn)評(píng) 本題主要考查點(diǎn)的軌跡方程的求解,設(shè)出點(diǎn)的坐標(biāo),根據(jù)中點(diǎn)坐標(biāo)關(guān)系,利用代入法是解決本題的關(guān)鍵.難度不大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知正六棱柱的底面邊長(zhǎng)為2,側(cè)棱長(zhǎng)為3,其三視圖中的俯視圖如圖所示,則其左視圖的面積是6$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知圓O:x2+y2=9,點(diǎn)A(2,0),點(diǎn)P為動(dòng)點(diǎn),以線段AP為直徑的圓內(nèi)切于圓O,則動(dòng)點(diǎn)P的軌跡方程是$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x}{1+x}$,數(shù)列{an}滿足a1=a(a為常數(shù),且a>0),an+1=f(an),n∈N*
(Ⅰ)計(jì)算a2,a3,a4,并由此猜想出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某桶裝水經(jīng)營(yíng)部每天的房租、人員工資等固定成本為200元,每桶水的進(jìn)價(jià)是5元,銷售單價(jià)與日均銷售量的關(guān)系如下表所示.
銷售單價(jià)/元6789101112
日均銷售量/桶480440400360320280240
請(qǐng)根據(jù)以上數(shù)據(jù)分析,這個(gè)經(jīng)營(yíng)部定價(jià)在11.5元/桶才能獲得最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在中心角為60°,半徑為1的扇形OAB的半徑OB上任取一點(diǎn)M,作內(nèi)接矩形MNPQ,設(shè)∠QOA=θ,矩形MNPQ的面積為S.
(1)求S關(guān)于θ的函數(shù)解析式;
(2)求S的最大值;
(3)如果分別在OA,OB上任取一點(diǎn)C、D,使OC=OD,按如圖方式作扇形的內(nèi)接矩形CDEF,設(shè)該矩形的面積為S′,問S′的最大值與S的最大值,哪一個(gè)更大,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某空調(diào)專賣店試銷A、B、C三種新型空調(diào),銷售情況如表所示:
 第一周  第二周第三周  第四周第五周 
 A型數(shù)量(臺(tái)) 11 10 15 A4 A5
 B型數(shù)量(臺(tái)) 9 12 13 B4 B5
 C型數(shù)量(臺(tái)) 15 12C4  C5
(1)求A型空調(diào)前三周的平均周銷售量;
(2)為跟蹤調(diào)查空調(diào)的使用情況,根據(jù)銷售記錄,從前三周售出的所有空調(diào)中隨機(jī)抽取一臺(tái),求抽到的空調(diào)不是B型且不是第一周售出空調(diào)的概率;
(3)根據(jù)C型空調(diào)前三周的銷售情況,預(yù)估C型空調(diào)五周的平均周銷售量為10臺(tái),當(dāng)C型空調(diào)周銷售量的方差最小時(shí),求C4,C5的值.
(注:方差s2=$\frac{1}{n}$[(x${\;}_{1}-\overline{x}$)2+(x${\;}_{2}-\overline{x}$)2+…+(xn-$\overline{x}$)2],其中$\overline{x}$為x1,x2,…,xn的平均數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.一個(gè)三棱柱被一個(gè)平面截去一部分,剩下的幾何體的三視圖如圖所示,則該幾何體的體積為20.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,cos2A=cosA,a=2$\sqrt{3}$,4$\sqrt{3}$S△ABC=a2+b2-c2
(1)求角A;
(2)求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案