15.在復平面內(nèi),復數(shù)z=i(2-3i)對應的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復數(shù)的運算法則、幾何意義即可得出.

解答 解:復數(shù)z=i(2-3i)=2i+3對應的點(3,2)位于第一象限.
故選:A.

點評 本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

5.在空間直角坐標系Oxyz中,設點M是點N(2,-1,4)關于坐標平面xOy的對稱點,點P(1,3,2)關于x軸的對稱點為Q,則線段MQ的長度等于( 。
A.3B.$\sqrt{21}$C.$\sqrt{53}$D.$\sqrt{61}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖,從橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(\;a>b>0\;)$上一點P向x軸作垂線,垂足恰為左焦點F1,又點A是橢圓與x軸正半軸的交點,點B是橢圓與y軸正半軸的交點,且$AB∥OP,\;\;|{F_1}A|\;=\sqrt{10}+\sqrt{5}$.
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若M是橢圓上的動點,點N(4,2),求線段MN中點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.對于命題p:?x∈R,使得x2+x+1<0,則?p為:?x∈R,使得x2+x+1≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<$\frac{π}{2}$)部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)把函數(shù)f(x)圖象向右平移$\frac{1}{2}$個單位,得到函數(shù)y=g(x)圖象,當x∈[$\frac{1}{2}$,$\frac{5}{2}$]時,求函數(shù)y=g(x)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.若角60°的終邊上有一點(4,a),則a的值是( 。
A.4$\sqrt{3}$B.-4$\sqrt{3}$C.$\frac{4\sqrt{3}}{3}$D.-$\frac{4\sqrt{3}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.不等式$\frac{|x+1|}{|x+2|}$≥1的實數(shù)解為( 。
A.(-∞,2)∪(-2,-$\frac{3}{2}$]B.(-∞,-2)∪(-2,-$\frac{3}{2}$]C.(-∞,-2)D.(-2,-$\frac{3}{2}$]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.設A,B,C為直線l上不同的三點,O為直線l外一點.若p$\overrightarrow{OA}$+q$\overrightarrow{OB}$+r$\overrightarrow{OC}$=$\overrightarrow 0$(p,q,r∈R),則p+q+r=( 。
A.3B.-1C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.圓心為C(-1,2),且一條直徑的兩個端點落在兩坐標軸上的圓的方程是( 。
A.(x-1)2+(y+2)2=5B.(x-1)2+(y+2)2=20C.(x+1)2+(y-2)2=20D.(x+1)2+(y-2)2=5

查看答案和解析>>

同步練習冊答案