5.在空間直角坐標(biāo)系Oxyz中,設(shè)點(diǎn)M是點(diǎn)N(2,-1,4)關(guān)于坐標(biāo)平面xOy的對(duì)稱點(diǎn),點(diǎn)P(1,3,2)關(guān)于x軸的對(duì)稱點(diǎn)為Q,則線段MQ的長(zhǎng)度等于( 。
A.3B.$\sqrt{21}$C.$\sqrt{53}$D.$\sqrt{61}$

分析 先根據(jù)點(diǎn)的對(duì)稱求得M的坐標(biāo)Q坐標(biāo),進(jìn)而利用兩點(diǎn)的間的距離公式求得|MQ|.

解答 解:∵M(jìn)是N關(guān)于坐標(biāo)平面xoy的對(duì)稱點(diǎn)
∴M點(diǎn)坐標(biāo)為(2,-1,-4)
點(diǎn)P(1,3,2)關(guān)于x軸對(duì)稱點(diǎn)Q(1,-3,-2)
∴|MQ|=$\sqrt{(2-1)^{2}+(-1+3)^{2}+(-4+2)^{2}}$=3.
故選:A.

點(diǎn)評(píng) 本題主要考查了空間直角坐標(biāo)系中的點(diǎn)的對(duì)稱,兩點(diǎn)間的距離公式.考查了學(xué)生對(duì)基礎(chǔ)知識(shí)的把握.屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知$\vec a$,$\vec b$不共線向量,若向量$\overrightarrow{AB}$=2$\vec a$+k$\vec b$,$\overrightarrow{CB}$=$\vec a$+$\vec b$,$\overrightarrow{CD}$=2$\vec a$-$\vec b$,若A,B,D三點(diǎn)共線,則實(shí)數(shù)k的值等于-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=$\frac{2x+5}{x+2}$,定義在R上的函數(shù)g(x)周期為2,且滿足g(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1)}\\{2-{x}^{2},x∈[-1,0)}\end{array}\right.$,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,1]上的所有零點(diǎn)之和為(  )
A.-4B.-6C.-7D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知函數(shù)$f(x)={2^x}-\frac{1}{{{2^{|x|}}}}$.若f(x)=2,求x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)$f(x)=2cos(2x+\frac{π}{3})-2cosx+1$.
(1)試將函數(shù)f(x)化為f(x)=Asin(ωx+φ)+B(ω>0)的形式,并求該函數(shù)的對(duì)稱中心;
(2)若銳角△ABC中角A、B、C所對(duì)的邊分別為a、b、c,且f(A)=0,求$\frac{c}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知關(guān)于x的不等式組$\left\{\begin{array}{l}{1≤k{x}^{2}+2}\\{x+k≤2}\end{array}\right.$有唯一實(shí)數(shù)解,則實(shí)數(shù)k的取值集合{$1+\sqrt{2}$,$\frac{1-\sqrt{5}}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.化簡(jiǎn)$\frac{sin(\frac{π}{2}-α)cos(π+α)}{sin(\frac{3π}{2}+α)}$=cosa.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知圓A:x2+(y+1)2=1,圓B:(x-4)2+(y-3)2=1.
(1)過(guò)A的直線L截圓B所得的弦長(zhǎng)為$\frac{6}{5}$,求該直線L的斜率;
(2)動(dòng)圓P同時(shí)平分圓A與圓B的周長(zhǎng);
①求動(dòng)圓圓心P的軌跡方程;
②問(wèn)動(dòng)圓P是否過(guò)定點(diǎn),若經(jīng)過(guò),則求定點(diǎn)坐標(biāo);若不經(jīng)過(guò),則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在復(fù)平面內(nèi),復(fù)數(shù)z=i(2-3i)對(duì)應(yīng)的點(diǎn)位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案