12.在△ABC中,角A,B,C所對的邊分別為a,b,c,且acosC,bcosB,ccosA成等差數(shù)列,若a+c=4,則AC邊上中線長的最小值$\sqrt{3}$.

分析 已知等式利用正弦定理化簡,整理后求出cosB的值,即可確定出B的度數(shù),設AC邊上的中點為E,利用三邊a,b,c用余弦等量將中線BE表示出來,再用基本不等式求最小值.

解答 解:∵acosC,bcosB,ccosA成等差數(shù)列,
∴2bcosB=ccosA+acosC,利用正弦定理得:2sinBcosB-sinCcosA=sinAcosC,
整理得:2sinBcosB=sin(A+C),即2sinBcosB=sinB,
∵sinB≠0,∴cosB=$\frac{1}{2}$,
則B=$\frac{π}{3}$.如圖:設AC邊上的中點為E
在△BAE中,由余弦定理得:BE2=c2+($\frac{2}$)2-2c($\frac{2}$)cosA,
又cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$,a2+c2-b2=ac代入上式,并整理得:
BE2=$\frac{{a}^{2}+{c}^{2}+ac}{4}$=$\frac{(a+c)^{2}-ac}{4}$=$\frac{16-ac}{4}$≥$\frac{16-(\frac{a+c}{2})^{2}}{4}$=3,當a=c=2時取到”=”,
所以AC邊上中線長的最小值為$\sqrt{3}$.
故答案為:$\sqrt{3}$.

點評 此題主要考查了正弦定理,以及特殊角的三角函數(shù)值,余弦定理的應用,考查了用基本不等式求最值,考查了分析解決問題及計算能力,熟練掌握正弦定理是解本題的關鍵,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

2.角α的始邊在x軸非負半軸,終邊過點P(1,$\sqrt{3}$),則sinα的值為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.若曲線C:y=ex-ax+1存在與直線3x+y=0平行的切線,則函數(shù)f(x)=x2-ax+2有2個零點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知雙曲線C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點分別為F1、F2,若在雙曲線C的右支上存在一點P滿足|PF1|=3|PF2|,且$\overrightarrow{P{F_1}}$•$\overrightarrow{P{F_2}}$=-a2,則雙曲線C的離心率為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.已知平面向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為120°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.在邊長為4的正△ABC中,D為BC的中點,則$\overrightarrow{DA}$•$\overrightarrow{AB}$=12.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設等差數(shù)列{an}的前n項和為Sn,且a2=2,S5=15,數(shù)列{bn}的前n項和為Tn,且b1=$\frac{1}{2}$,2nbn+1=(n+1)bn(n∈N*
(1)求數(shù)列{an}的通項公式an及前n項和Sn
(2)求數(shù)列{bn}的通項公式bn及前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.直線l經(jīng)過點(0,-1),且通過第二、三、四象限,并與坐標軸圍成的三角形面積為2,則直線l的方程為( 。
A.x+y+4=0B.x+4y+4=0C.4x+y+16=0D.x+y-4=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.以下命題中:
①從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質檢員每20分鐘從中抽取一件產(chǎn)品進行某項指標檢測,這樣的抽樣是分層抽樣.
②由y=3sin2x的圖象向右平移$\frac{π}{3}$個單位長度可以得到函數(shù)f(x)=3sin(2x-$\frac{π}{3}$)的圖象.
③在回歸直線方程$\widehat{y}$=0.2x+12中,當變量x每增加一個單位時,變量$\widehat{y}$增加0.2單位.
④對分類變量X與Y,它們的隨機變量K2的觀測值k來說,k越小,“X與Y有關系”的把握程度越大.
⑤設0<x<$\frac{π}{2}$,則“xsin2x<1”是“xsinx<1”的充分而不必要條件.
其中為真命題的個數(shù)有(  )
A.3個B.2個C.1個D.0個

查看答案和解析>>

同步練習冊答案