7.對(duì)于集合A,B我們定義集合A×B={(a,b)|a∈A,b∈B},例如A={1,2},B={3,4},則有A×B={(1,3),(1,4),(2,3),(2,4)}據(jù)此定義回答下列問(wèn)題:
(1)已知A×B={(1,2),(2,2)},求集合A,B;
(2)若A中有三個(gè)元素,B中有四個(gè)元素,試確定A×B中有幾個(gè)元素.

分析 (1)根據(jù)定義可知,1,2為集合A的元素,集合B中只有元素2,即得結(jié)果;
(2)根據(jù)定義,利用列舉法易得.

解答 解:(1)∵A×B={(1,2),(2,2)},根據(jù)定義可得:1∈A,2∈A,2∈B,
∴A={1,2},B={2}.
(2)不妨設(shè)A={a,b,c},B={d,e,f,g},則根據(jù)定義有A×B={(a,d),(a,e,),(a,f),(a,g),(b,d),(b,e),(b,f),(b,g),(c,d),(c,e),(c,f),(c,g)}
故A×B中一共12個(gè)元素.

點(diǎn)評(píng) 本題是一道新定義問(wèn)題,解決此類問(wèn)題的關(guān)鍵是真確理解定義,然后用定義進(jìn)行求解,屬于中等難度題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,長(zhǎng)方體OABC-D′A′B′C′中,|OA|=3,|OC|=4,|OD′|=5,B′D′與A′C′交于P,則點(diǎn)P的坐標(biāo)為($\frac{3}{2}$,2,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.符號(hào)[x]表示不超過(guò)x的最大整數(shù),如[π]=3,[-1.08]=-2,定義函數(shù)f(x)=x-[x].給出下列五個(gè)命題:
①函數(shù)f(x)的定義域是R,值域?yàn)閇0,1];       
②方程$f(x)=\frac{1}{2}$有無(wú)數(shù)個(gè)解;
③函數(shù)f(x)是周期函數(shù);                      
④函數(shù)f(x)是增函數(shù).
⑤函數(shù)$F(x)=f(x)+\frac{1}{2}x-1$有3個(gè)零點(diǎn)
其中正確命題的序號(hào)有②③⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.不等式組$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+3y-4≤0\end{array}\right.$表示的平面區(qū)域面積為( 。
A.$\frac{1}{5}$B.$\frac{6}{5}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.正三棱柱被一個(gè)平面截去一部分后與半圓柱組成一個(gè)幾何體,該幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$2π+\sqrt{3}$B.$π+\sqrt{3}$C.$π+\frac{{4\sqrt{3}}}{3}$D.$π+\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.在△ABC中,B=45°,c=1.5,b=2,那么sinC=$\frac{3\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.命題“若x-1=1,則2x+1=3”的逆否命題是(  )
A.若2x+1=3,則x-1=1B.若x-1≠1,則2x+1≠3
C.若2x+1≠3,則x-1≠1D.若2x+1≠3,則x-1=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)設(shè)A={x|x是小于9的正整數(shù)},B={1,2,3},求A∩B,∁AB;
(2)已知集合A={x|-3<x<1},B={x|2<x<10},求A∪B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.某流程框圖如圖所示,則輸出的s的值是24;

查看答案和解析>>

同步練習(xí)冊(cè)答案