6.若等比數(shù)列{an}滿(mǎn)足anan+1=64n,則{an}的公比為(  )
A.±8B.8C.±16D.16

分析 設(shè){an}的公比為q,由題意可得q>0.可得$\frac{{a}_{n+1}{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=$\frac{6{4}^{n+1}}{6{4}^{n}}$=64=q2,即可得出.

解答 解:設(shè){an}的公比為q,由題意可得q>0.
∵等比數(shù)列{an}滿(mǎn)足anan+1=64n
∴$\frac{{a}_{n+1}{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=$\frac{6{4}^{n+1}}{6{4}^{n}}$=64=q2,
解得q=8.
故選:B.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點(diǎn)A關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn)為B,F(xiàn)為其右焦點(diǎn),若AF⊥BF,且∠ABF=$\frac{π}{4}$,則橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.如圖,長(zhǎng)方體OABC-D′A′B′C′中,|OA|=3,|OC|=4,|OD′|=5,B′D′與A′C′交于P,則點(diǎn)P的坐標(biāo)為($\frac{3}{2}$,2,5).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.兩條平行線l1:3x+4y-2=0,l2:9x+12y-10=0間的距離等于$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知扇形的周長(zhǎng)為10cm,面積為4cm2,則扇形的圓心角為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.設(shè)平面直角坐標(biāo)系原點(diǎn)與極坐標(biāo)極點(diǎn)重合,x軸正半軸與極軸重合,若已知曲線C的極坐標(biāo)方程為ρ2=$\frac{12}{{3{{cos}^2}θ+{{sin}^2}θ}}$,點(diǎn)F1,F(xiàn)2為其左右焦點(diǎn),直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù),t∈R)
(1)求直線l的普通方程和曲線C的參數(shù)方程;
(2)求曲線C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.符號(hào)[x]表示不超過(guò)x的最大整數(shù),如[π]=3,[-1.08]=-2,定義函數(shù)f(x)=x-[x].給出下列五個(gè)命題:
①函數(shù)f(x)的定義域是R,值域?yàn)閇0,1];       
②方程$f(x)=\frac{1}{2}$有無(wú)數(shù)個(gè)解;
③函數(shù)f(x)是周期函數(shù);                      
④函數(shù)f(x)是增函數(shù).
⑤函數(shù)$F(x)=f(x)+\frac{1}{2}x-1$有3個(gè)零點(diǎn)
其中正確命題的序號(hào)有②③⑤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.不等式組$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+3y-4≤0\end{array}\right.$表示的平面區(qū)域面積為( 。
A.$\frac{1}{5}$B.$\frac{6}{5}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.(1)設(shè)A={x|x是小于9的正整數(shù)},B={1,2,3},求A∩B,∁AB;
(2)已知集合A={x|-3<x<1},B={x|2<x<10},求A∪B.

查看答案和解析>>

同步練習(xí)冊(cè)答案