6.若等比數(shù)列{an}滿足anan+1=64n,則{an}的公比為( 。
A.±8B.8C.±16D.16

分析 設(shè){an}的公比為q,由題意可得q>0.可得$\frac{{a}_{n+1}{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=$\frac{6{4}^{n+1}}{6{4}^{n}}$=64=q2,即可得出.

解答 解:設(shè){an}的公比為q,由題意可得q>0.
∵等比數(shù)列{an}滿足anan+1=64n,
∴$\frac{{a}_{n+1}{a}_{n+2}}{{a}_{n}{a}_{n+1}}$=$\frac{6{4}^{n+1}}{6{4}^{n}}$=64=q2,
解得q=8.
故選:B.

點評 本題考查了等比數(shù)列的通項公式及其性質(zhì),考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

16.設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)上一點A關(guān)于原點的對稱點為B,F(xiàn)為其右焦點,若AF⊥BF,且∠ABF=$\frac{π}{4}$,則橢圓的離心率為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.如圖,長方體OABC-D′A′B′C′中,|OA|=3,|OC|=4,|OD′|=5,B′D′與A′C′交于P,則點P的坐標為($\frac{3}{2}$,2,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.兩條平行線l1:3x+4y-2=0,l2:9x+12y-10=0間的距離等于$\frac{4}{15}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知扇形的周長為10cm,面積為4cm2,則扇形的圓心角為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.設(shè)平面直角坐標系原點與極坐標極點重合,x軸正半軸與極軸重合,若已知曲線C的極坐標方程為ρ2=$\frac{12}{{3{{cos}^2}θ+{{sin}^2}θ}}$,點F1,F(xiàn)2為其左右焦點,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$為參數(shù),t∈R)
(1)求直線l的普通方程和曲線C的參數(shù)方程;
(2)求曲線C上的點到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.符號[x]表示不超過x的最大整數(shù),如[π]=3,[-1.08]=-2,定義函數(shù)f(x)=x-[x].給出下列五個命題:
①函數(shù)f(x)的定義域是R,值域為[0,1];       
②方程$f(x)=\frac{1}{2}$有無數(shù)個解;
③函數(shù)f(x)是周期函數(shù);                      
④函數(shù)f(x)是增函數(shù).
⑤函數(shù)$F(x)=f(x)+\frac{1}{2}x-1$有3個零點
其中正確命題的序號有②③⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.不等式組$\left\{\begin{array}{l}x+2y-2≥0\\ x-y+1≥0\\ 2x+3y-4≤0\end{array}\right.$表示的平面區(qū)域面積為(  )
A.$\frac{1}{5}$B.$\frac{6}{5}$C.$\frac{3}{5}$D.$\frac{3}{10}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.(1)設(shè)A={x|x是小于9的正整數(shù)},B={1,2,3},求A∩B,∁AB;
(2)已知集合A={x|-3<x<1},B={x|2<x<10},求A∪B.

查看答案和解析>>

同步練習冊答案