18.已知拋物線x2=4y上一點M到焦點的距離為3,則點M到x軸的距離為( 。
A.$\frac{1}{2}$B.1C.2D.4

分析 先根據(jù)拋物線方程求得焦點坐標及準線方程,進而根據(jù)拋物線的定義可知點p到焦點的距離與到準線的距離相等,進而推斷出yM+1=2,求得yM,可得點M到x軸的距離.

解答 解:根據(jù)拋物線方程可求得焦點坐標為(0,1),準線方程為y=-1,
根據(jù)拋物線定義,
∴yM+1=3,
解得yM=2,
∴點M到x軸的距離為2,
故選:C,

點評 本題主要考查拋物線的定義:拋物線上的點到焦點距離與到準線距離相等,?捎脕斫鉀Q涉及拋物線焦點的直線或焦點弦的問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

8.在圓x2y2=1內任取一點,以該點為中點作弦,則所作弦的長度超過$\sqrt{2}$的概率是( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.二項式(2x-1)8的展開式中,求:
(1)二項式系數(shù)最大的項;
(2)所有二項式系數(shù)之和;
(3)求所有奇數(shù)次冪項的系數(shù)和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知數(shù)列{an}的各項均大于1,前n項和Sn滿足2Sn=an2+n-1.
(1)求a1及數(shù)列{an}的通項公式;
(2)若bn=(1-an)•2${\;}^{{a}_{n}-1}$,Sn=b1+b2+…+bn,求使Sn+n•2n+1>50成立的正整數(shù)n的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.設全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},則(∁UA)∪(∁UB)=( 。
A.{1,2,3,4,5}B.{3}C.{1,2,4,5}D.{1,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=ax2+2x-ln(x+1)(a為常數(shù))
(1)當a=-1時,求函數(shù)f(x)的單調區(qū)間;
(2)求x∈[0,+∞)時,不等式f(x)≤x恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某工廠為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組檢測數(shù)據(jù)(xi,yi)(i=1,2,…,6)如表所示:
試銷價格x(元)4567a9
產(chǎn)品銷量y(件)b8483807568
已知變量x,y具有線性負相關關系,且$\sum_{i=1}^6{x_i}=39,\sum_{i=1}^6{y_i}=480$,現(xiàn)有甲、乙、丙三位同學通過計算求得其線性回歸方程分別為:甲y=4x+54;乙y=-4x+106;丙y=-4.2x+105,其中有且僅有一位同學的計算結果是正確的.
(1)試判斷誰的計算結果正確?并求出a,b的值;
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過1,則該檢測數(shù)據(jù)是“理想數(shù)據(jù)”.現(xiàn)從檢測數(shù)據(jù)中隨機抽取2個,求這兩個檢驗數(shù)據(jù)均為“理想數(shù)據(jù)”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知a<0,f(x)=x3-ax
(1)判斷f(x)在R上的單調性,并證明.
(2)設g(x)=$\left\{\begin{array}{l}{f(x),x≤-1}\\{{x}^{2}-2ax+1,x>-1}\end{array}\right.$,且g(x)在R上是單調函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.下列函數(shù)在其定義域內為奇函數(shù)的是( 。
A.y=x+$\frac{1}{x}$B.y=xsin xC.y=|x|-1D.y=cos x

查看答案和解析>>

同步練習冊答案