4.直角△ABC中,A<C,且cos(A-C)=sinC,則sinC=$\frac{\sqrt{3}}{2}$.

分析 由題意分析可得,角B為直角,可得A+C=$\frac{π}{2}$,再由cos(A-C)=sinC,得2C-A=$\frac{π}{2}$,聯(lián)立求得C得答案.

解答 解:在直角△ABC中,A<C,
若C為直角,則由cos(A-C)=sinC,得cos(A-$\frac{π}{2}$)=1,
得sinA=1,A=$\frac{π}{2}$,矛盾;
∴B=$\frac{π}{2}$,則A+C=$\frac{π}{2}$,又cos(A-C)=sinC,得cos(C-A)=sinC,
得C+(C-A)=2C-A=$\frac{π}{2}$,
聯(lián)立$\left\{\begin{array}{l}{A+C=\frac{π}{2}}\\{2C-A=\frac{π}{2}}\end{array}\right.$,解得C=$\frac{π}{3}$.
∴sinC=sin$\frac{π}{3}=\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.

點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查了分類討論的數(shù)學(xué)思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知數(shù)列{an}滿足a1=4,anan-1-4an-1+4=0(n≥2).
(1)求證:$\{\frac{1}{{{a_n}-2}}\}$為等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)若對任意的n∈N*,3nk-nan+6≥0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,有一個(gè)水平放置的透明無蓋的正方體容器,容器高8cm,將一個(gè)球放在容器口,再向容器注水,當(dāng)球面恰好接觸水面時(shí)測得水深為6cm,如不計(jì)容器的厚度,則球的表面積為( 。
A.100πB.$\frac{500π}{3}$C.50πD.200π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,矩形ABCD和△ABP所在的平面互相垂直,AB=2AD=2,PA=PB.
(Ⅰ)求證:AD⊥PB;
(Ⅱ)若多面體ABCDP的體積是$\frac{2\sqrt{6}}{9}$,求直線PD與平面ABCD所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)是定義在(-3,0)∪(0,3)上的偶函數(shù),當(dāng)0<x<3時(shí),f(x)的圖象如圖所示,則不等式f(x)•cosx<0的解集是( 。
A.(-3,-$\frac{π}{2}$)∪(0,1)∪($\frac{π}{2}$,3)B.(-3,-1)∪(-1,0)∪(0,1)∪(1,3)
C.(-3,-$\frac{π}{2}$)∪(0,1)∪(1,3)D.(-3,-$\frac{π}{2}$)∪(-1,0)∪(0,1)∪($\frac{π}{2}$,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.O為△ABC平面內(nèi)一定點(diǎn),該平面內(nèi)一動(dòng)點(diǎn)P滿足M={P|$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ(|$\overrightarrow{AB}$|sinB•$\overrightarrow{AB}$+|$\overrightarrow{AC}$|sinC•$\overrightarrow{AC}$),λ>0},則△ABC的(  )一定屬于集合M.
A.重心B.垂心C.外心D.內(nèi)心

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若函數(shù)f(x)=3x+lnx的圖象在點(diǎn)(1,f(1))處的切線與直線x+ay+1=0垂直,則a=( 。
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-4D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實(shí)數(shù)x,y滿足:$\left\{\begin{array}{l}x≥1\\ x+y≤3\\ x-2y-3≤0\end{array}\right.$,則z=2x+y的最小值( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,棱長為1的正方體ABCD-A1B1C1D1中,P為線段A1B上的動(dòng)點(diǎn),則下列結(jié)論錯(cuò)誤的是(  )
A.DC1⊥D1P
B.若直線l是平面ABCD內(nèi)的直線,直線m是平面DD1C1C內(nèi)的直線,若l與m相交,則交點(diǎn)一定在直線CD上
C.若P為A1B上動(dòng)點(diǎn),則AP+PD1的最小值為$\frac{\sqrt{2}+\sqrt{6}}{2}$
D.∠PAD1最小為$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案