分析 由題意分析可得,角B為直角,可得A+C=$\frac{π}{2}$,再由cos(A-C)=sinC,得2C-A=$\frac{π}{2}$,聯(lián)立求得C得答案.
解答 解:在直角△ABC中,A<C,
若C為直角,則由cos(A-C)=sinC,得cos(A-$\frac{π}{2}$)=1,
得sinA=1,A=$\frac{π}{2}$,矛盾;
∴B=$\frac{π}{2}$,則A+C=$\frac{π}{2}$,又cos(A-C)=sinC,得cos(C-A)=sinC,
得C+(C-A)=2C-A=$\frac{π}{2}$,
聯(lián)立$\left\{\begin{array}{l}{A+C=\frac{π}{2}}\\{2C-A=\frac{π}{2}}\end{array}\right.$,解得C=$\frac{π}{3}$.
∴sinC=sin$\frac{π}{3}=\frac{\sqrt{3}}{2}$.
故答案為:$\frac{\sqrt{3}}{2}$.
點(diǎn)評 本題考查三角函數(shù)的化簡求值,考查了分類討論的數(shù)學(xué)思想方法,是中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 100π | B. | $\frac{500π}{3}$ | C. | 50π | D. | 200π |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-3,-$\frac{π}{2}$)∪(0,1)∪($\frac{π}{2}$,3) | B. | (-3,-1)∪(-1,0)∪(0,1)∪(1,3) | ||
C. | (-3,-$\frac{π}{2}$)∪(0,1)∪(1,3) | D. | (-3,-$\frac{π}{2}$)∪(-1,0)∪(0,1)∪($\frac{π}{2}$,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 重心 | B. | 垂心 | C. | 外心 | D. | 內(nèi)心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{1}{4}$ | B. | $\frac{1}{4}$ | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | DC1⊥D1P | |
B. | 若直線l是平面ABCD內(nèi)的直線,直線m是平面DD1C1C內(nèi)的直線,若l與m相交,則交點(diǎn)一定在直線CD上 | |
C. | 若P為A1B上動點(diǎn),則AP+PD1的最小值為$\frac{\sqrt{2}+\sqrt{6}}{2}$ | |
D. | ∠PAD1最小為$\frac{π}{4}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com