16.極坐標(biāo)方程ρ=sinθ+cosθ表示的曲線是( 。
A.直線B.C.橢圓D.拋物線

分析 極坐標(biāo)方程ρ=sinθ+cosθ,即ρ2=ρ(sinθ+cosθ),利用互化公式代入即可得出.

解答 解:極坐標(biāo)方程ρ=sinθ+cosθ,即ρ2=ρ(sinθ+cosθ),
化為x2+y2=x+y,配方為:$(x-\frac{1}{2})^{2}+(y-\frac{1}{2})^{2}$=$\frac{1}{2}$,
表示的曲線是以$(\frac{1}{2},\frac{1}{2})$為圓心,$\frac{\sqrt{2}}{2}$為半徑的圓.
故選:B.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程與直角坐標(biāo)方程的互化,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知一列數(shù)-1,3,-7,15,( 。,63,…,應(yīng)填入括號(hào)中的數(shù)字為( 。
A.33B.-31C.-27D.-57

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某產(chǎn)品的廣告費(fèi)用x與銷售額y的統(tǒng)計(jì)數(shù)據(jù)如下表:
廣告費(fèi)用x(萬元)4235
銷售額y(萬元)492654
由上表求得回歸方程$\stackrel{∧}{y}$=9.4x+9.1,當(dāng)廣告費(fèi)用為3萬元時(shí),銷售額為( 。
A.39萬元B.38萬元C.38.5萬元D.39.373萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.?dāng)?shù)列{an}中,an+1=$\frac{{a}_{n}}{1+3{a}_{n}}$,a1=2,則a3=( 。
A.$\frac{2}{25}$B.$\frac{2}{19}$C.$\frac{2}{13}$D.$\frac{2}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知平面上不重合的四點(diǎn)P,A,B,C滿足$\overrightarrow{PA}$+$\overrightarrow{PB}$+$\overrightarrow{PC}$=$\overrightarrow 0$且$\overrightarrow{AB}$+$\overrightarrow{AC}$+m$\overrightarrow{AP}$=$\overrightarrow 0$,那么實(shí)數(shù)m的值為(  )
A.2B.-3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知非零向量$\overrightarrow a$,$\overrightarrow b$滿足|${\overrightarrow a}$|=1,且($\overrightarrow a$-$\overrightarrow b$)•($\overrightarrow a$+$\overrightarrow b$)=$\frac{3}{4}$.
(1)求|${\overrightarrow b}$|;  
 (2)當(dāng)$\overrightarrow a$•$\overrightarrow b$=-$\frac{1}{4}$時(shí),求向量$\overrightarrow a$與$\overrightarrow a$+2$\overrightarrow b$的夾角θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知i是虛數(shù)單位,若z(1+3i)=i,則z的共軛復(fù)數(shù)的虛部為(  )
A.$\frac{1}{10}$B.-$\frac{1}{10}$C.$\frac{i}{10}$D.-$\frac{i}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{2}$x2-mln$\sqrt{1+2x}$+mx-2m,m<0.
(1)當(dāng)m=-1時(shí),求函數(shù)y=f(x)-$\frac{x}{3}$的單調(diào)區(qū)間;
(2)已知m≤-$\frac{e}{2}$(其中e是自然對(duì)數(shù)的底數(shù)),若存在實(shí)數(shù)x0∈(-$\frac{1}{2}$,$\frac{e-1}{2}$],使f(x0)>e+1成立,求m的范圍;
(3)證明:$\sum_{k=1}^n{\frac{8k-3}{{3{k^2}}}}$>ln$\frac{(n+1)(n+2)}{2}$(n∈N*).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)已知a、b∈R,a>b>e,(其中e是自然對(duì)數(shù)的底數(shù)),求證:ba>ab

查看答案和解析>>

同步練習(xí)冊(cè)答案