5.已知△ABC中,AB=AC=1,且|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,$\overrightarrow{BE}$=3$\overrightarrow{EC}$,若點P是BC邊上的動點,則$\overrightarrow{AP}•\overrightarrow{AE}$的取值范圍是[$\frac{1}{4}$,$\frac{3}{4}$].

分析 根據(jù)|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|得出$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,建立平面直角坐標(biāo)系,利用平面向量的坐標(biāo)運算表示出$\overrightarrow{AP}$•$\overrightarrow{AE}$,根據(jù)坐標(biāo)運算即可求出$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范圍.

解答 解:△ABC中,AB=AC=1,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,∴$\overrightarrow{AB}$⊥$\overrightarrow{AC}$;
以AC,AB為坐標(biāo)軸建立平面直角坐標(biāo)系,如圖所示:

則A(0,0),C(1,0),B(0,1),
∵$\overrightarrow{BE}$=3$\overrightarrow{EC}$,∴E($\frac{3}{4}$,$\frac{1}{4}$);
直線BC方程為x+y=1,即x+y-1=0;
設(shè)P(x,y),則0≤x≤1,
則$\overrightarrow{AP}$=(x,y),$\overrightarrow{AE}$=($\frac{3}{4}$,$\frac{1}{4}$),
∴$\overrightarrow{AP}$•$\overrightarrow{AE}$=$\frac{3}{4}$x+$\frac{1}{4}$y=$\frac{3}{4}$x+$\frac{1}{4}$(1-x)=$\frac{1}{2}$x+$\frac{1}{4}$;
∵0≤x≤1,∴$\frac{1}{4}$≤$\frac{1}{2}$x+$\frac{1}{4}$≤$\frac{3}{4}$;
即$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范圍是[$\frac{1}{4}$,$\frac{3}{4}$].
故答案為:[$\frac{1}{4}$,$\frac{3}{4}$].

點評 本題考查了平面向量的數(shù)量積運算,建立坐標(biāo)系使用坐標(biāo)計算是常用方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是函數(shù)y=Asin(ωx+φ)(A>0,ω>0,|φ|≤$\frac{π}{2}}$)圖象的一部分,為了得到這個函數(shù)的圖象,只要將y=sinx的圖象上所有的點( 。
A.向左平移$\frac{π}{8}$個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變
B.向右平移$\frac{π}{8}$個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$,縱坐標(biāo)不變
C.向左平移$\frac{π}{4}$個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$,縱坐標(biāo)不變
D.向右平移$\frac{π}{4}$個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.過拋物線E:y2=2px(p>0)準(zhǔn)線上任意點C作E的兩條切線,切點分別為A,B.
(1)求$\overrightarrow{CA}$•$\overrightarrow{CB}$的值;
(2)C在AB上的射影H是否為定點,若是,請求出其坐標(biāo),若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,a,b,c成等比數(shù)列.
(1)若$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{2\sqrt{3}}{3}$,求∠B值;
(2)若△ABC外接圓的面積為4π,求△ABC面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,平面ABCD⊥平面ABEF,四邊形ABCD是矩形,四邊形ABEF是等腰梯形,其中AB∥EF,AB=2AF,∠BAF=60°,O,P分別為AB,CB的中點,M為△OBF的重心.
(I)求證:平面ADF⊥平面CBF;
(II)求證:PM∥平面AFC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2+ax+1,其中a∈R,且a≠0
(Ⅰ)若f(x)的最小值為-1,求a的值;
(Ⅱ)求y=|f(x)|在區(qū)間[0,|a|]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖所示的多面體EF-ABCD中,AF⊥底面ABCD,AF∥CE,四邊形ABCD為正方形,AF=2AB=2CE.
(1)求證:EF⊥平面BED;
(2)當(dāng)三棱錐E-BDF的體積為4時,求多面體EF-ABCD的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.拋物線y2=8x的焦點為F,其準(zhǔn)線與x軸的交點為Q,過點F作直線與此拋物線交于A,B兩點,若$\overrightarrow{FA}$•$\overrightarrow{QB}$=0,則|AF|-|BF|=( 。
A.8B.9C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.a(chǎn)=sin$\frac{2π}{7}$,b=cos$\frac{2π}{7}$,c=tan$\frac{2π}{7}$,則( 。
A.a<b<cB.a<c<bC.b<c<aD.b<a<c

查看答案和解析>>

同步練習(xí)冊答案