分析 根據(jù)|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|得出$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,$\overrightarrow{AB}$⊥$\overrightarrow{AC}$,建立平面直角坐標(biāo)系,利用平面向量的坐標(biāo)運算表示出$\overrightarrow{AP}$•$\overrightarrow{AE}$,根據(jù)坐標(biāo)運算即可求出$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范圍.
解答 解:△ABC中,AB=AC=1,|$\overrightarrow{AB}$+$\overrightarrow{AC}$|=|$\overrightarrow{AB}$-$\overrightarrow{AC}$|,∴$\overrightarrow{AB}$•$\overrightarrow{AC}$=0,∴$\overrightarrow{AB}$⊥$\overrightarrow{AC}$;
以AC,AB為坐標(biāo)軸建立平面直角坐標(biāo)系,如圖所示:
則A(0,0),C(1,0),B(0,1),
∵$\overrightarrow{BE}$=3$\overrightarrow{EC}$,∴E($\frac{3}{4}$,$\frac{1}{4}$);
直線BC方程為x+y=1,即x+y-1=0;
設(shè)P(x,y),則0≤x≤1,
則$\overrightarrow{AP}$=(x,y),$\overrightarrow{AE}$=($\frac{3}{4}$,$\frac{1}{4}$),
∴$\overrightarrow{AP}$•$\overrightarrow{AE}$=$\frac{3}{4}$x+$\frac{1}{4}$y=$\frac{3}{4}$x+$\frac{1}{4}$(1-x)=$\frac{1}{2}$x+$\frac{1}{4}$;
∵0≤x≤1,∴$\frac{1}{4}$≤$\frac{1}{2}$x+$\frac{1}{4}$≤$\frac{3}{4}$;
即$\overrightarrow{AP}$•$\overrightarrow{AE}$的取值范圍是[$\frac{1}{4}$,$\frac{3}{4}$].
故答案為:[$\frac{1}{4}$,$\frac{3}{4}$].
點評 本題考查了平面向量的數(shù)量積運算,建立坐標(biāo)系使用坐標(biāo)計算是常用方法.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 向左平移$\frac{π}{8}$個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變 | |
B. | 向右平移$\frac{π}{8}$個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$,縱坐標(biāo)不變 | |
C. | 向左平移$\frac{π}{4}$個單位長度,再把所得各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$,縱坐標(biāo)不變 | |
D. | 向右平移$\frac{π}{4}$個單位長度,再把所得各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 8 | B. | 9 | C. | 10 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a<b<c | B. | a<c<b | C. | b<c<a | D. | b<a<c |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com