6.已知命題p:m<0,命題q:x2+mx+1>0對一切實數(shù)x恒成立,若p∧q為真命題,則實數(shù)m的取值范圍是( 。
A.m<-2B.m>2C.m<-2或m>2D.-2<m<0

分析 命題q:x2+mx+1>0對一切實數(shù)x恒成立,則△<0,解得-2<m<2.由于p∧q為真命題,解出即可得出.

解答 解:命題q:x2+mx+1>0對一切實數(shù)x恒成立,則△=m2-4<0,解得-2<m<2.
∵p∧q為真命題,∴-2<m<0.
則實數(shù)m的取值范圍是(-2,0).
故選:D.

點評 本題考查了復(fù)合命題的判定方法、一元二次不等式的解集與判別式的關(guān)系,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.求下列不等式的解集.
(1)$\frac{2x}{x+1}<1$         
(2)x2+(2-a)x-2a≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓C過點Q(-3,2)且與橢圓D:$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1有相同焦點
(1)求橢圓C的方程;
(2)已知橢圓C的焦點為F1、F2,P為橢圓上一點∠F1PF2=60°,求△PF1F2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)函數(shù)$f(x)=2{cos^2}x+2\sqrt{3}sinxcosx+\frac{1}{2},({x∈R})$,
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若$x∈[{0,\frac{π}{2}}]$,求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的前n項和為Sn,Sn=2an-3n(n∈N*).
(1)證明數(shù)列{an+3}是等比數(shù)列,求出數(shù)列{an}的通項公式;
(2)設(shè)bn=$\frac{n}{3}$an,求數(shù)列{bn}的前n項和Tn
(3)數(shù)列{an}中是否存在三項,它們可以構(gòu)成等差數(shù)列?若存在,求出一組符合條件的項;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知A={x|x2-2x-3<0},B={x|ax2-x+b≥0},若A∩B=∅,A∪B=R,則a+b等于( 。
A.1B.-1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知冪函數(shù)f(x)的圖象過點(2,$\sqrt{2}$),則$f(\frac{1}{9})$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.一次函數(shù)f(x)是R上的增函數(shù),g(x)=f(x)(x+m),已知f[f(x)]=16x+5.
(1)求f(x)
(2)當(dāng)x∈[1,3]時,g(x)有最大值13,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.面積為Q的正方形,繞其一邊旋轉(zhuǎn)一周,則所得幾何體的側(cè)面積為2πQ.

查看答案和解析>>

同步練習(xí)冊答案