20.計算不定積分${∫}_{\;}^{\;}$$\frac{{x}^{3}+3{x}^{2}sinx+2x-1}{{x}^{2}}$dx.

分析 根據(jù)基本積分公式即可求出答案.

解答 解${∫}_{\;}^{\;}$$\frac{{x}^{3}+3{x}^{2}sinx+2x-1}{{x}^{2}}$dx=${∫}_{\;}^{\;}$(x+3sinx+$\frac{2}{x}$-$\frac{1}{{x}^{2}}$)dx=$\frac{1}{2}{x}^{2}-3cosx+2lnx+\frac{2}{{x}^{3}}$+c.

點評 本題考查了不定積分的計算,關鍵是化簡被積函數(shù),屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

10.tan2013°-tan78°+tan2013°tan78°=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.P是棱長為2的正四面體內(nèi)任意一點,則它到該正四面體各個面的距離之和等于$\frac{2\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知不等式x2-x≤0的解集為[a,b],則${∫}_{a}^$x(x-1)dx=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.已知角θ的頂點在坐標原點,始邊為x軸的正半軸,若A(x,-1)是角θ終邊上的一點,且cosθ=$\frac{2\sqrt{5}}{5}$,則x的值為( 。
A.-2B.2C.-3D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.下列向量與向量$\overrightarrow{a}$=(-3,4)垂直,且是單位向量的為( 。
A.(-4,3)B.(-3,-4)C.(-$\frac{4}{5}$,$\frac{3}{5}$)D.(-$\frac{4}{5}$,-$\frac{3}{5}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.與向量$\overrightarrow{a}$=(5,12)平行的單位向量為±($\frac{5}{13}$,$\frac{12}{13}$).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.如圖流程圖表示的算法是( 。
A.輸出c,b,aB.輸出最大值C.輸出最小值D.比較a,b,c大小

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.在△ABC中,已知AB=16,AC=12,BC=10,點I為△ABC內(nèi)一點,且存在實數(shù)λ、μ,使得$\overrightarrow{AI}$=$\overrightarrow{AB}$+λ($\frac{\overrightarrow{BA}}{|\overrightarrow{BA}|}$+$\frac{\overrightarrow{BC}}{|\overrightarrow{BC}|}$),$\overrightarrow{AI}$=$\overrightarrow{AC}$+μ($\frac{\overrightarrow{CA}}{|\overrightarrow{CA}|}$+$\frac{\overrightarrow{CB}}{|\overrightarrow{CB}|}$),則$\frac{\overrightarrow{CI}•\overrightarrow{CB}}{|\overrightarrow{BC}|}$的值為( 。
A.2B.3C.4D.5

查看答案和解析>>

同步練習冊答案