精英家教網 > 高中數學 > 題目詳情
20.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,點D是AB的中點.求證:
(1)AC1∥平面B1CD;
(2)AC⊥BC1

分析 (1)設BC1與B1C的交點為O,連結OD,推導出OD∥AC1,由此能證明AC1∥平面B1CD.
(2)由CC1⊥平面ABC,得CC1⊥AC,又AC⊥BC,由此能證明AC⊥BC1

解答 證明:(1)設BC1與B1C的交點為O,連結OD,
BCC1B1為平行四邊形,所以O為B1C中點,又D是AB的中點,
所以OD是△ABC1的中位線,OD∥AC1
又因為AC1?平面B1CD,OD?平面B1CD,
所以AC1∥平面B1CD.
(2)在直三棱柱ABC-A1B1C1中,CC1⊥平面ABC,
所以CC1⊥AC,又AC⊥BC,BC∩CC1=C,
所以AC⊥平面BCC1B1,
所以AC⊥BC1

點評 本題考查線面平行、線線垂直的證明,是中檔題,解題時要認真審題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

10.已知函數f(x)=$\frac{1}{3}$x3-mx2+$\frac{3}{2}$mx(m>0)
(1)當m=2時,求函數y=f(x)的單調遞增區(qū)間;
(2)若函數f(x)既有極大值,又有極小值,且當0≤x≤4m時,f(x)<mx2+($\frac{3}{2}$m-3m2)x+$\frac{32}{3}$恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

11.已知拋物線y2=4px上的點到直線x+y+3=0的最短距離為$\sqrt{2}$.
(Ⅰ)求拋物線的方程;
(Ⅱ)F為拋物線的焦點,直線l1,l2都過F點,且l1⊥l2,l1交拋物線于A,B兩點,l2交拋物線于C,D兩點,求|AB|+|CD|的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

8.在等差數列{an}中,其前n項和為Sn,S2=9,S4=22,則S8=60.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

15.設函數f(x)=$\overrightarrow a$•($\overrightarrow b$+$\overrightarrow c$)-2,其中向量$\overrightarrow a$=(sinx,-cosx),$\overrightarrow b$=(sinx,-3cosx),$\overrightarrow c$=(-cosx,sinx),x∈R,
(1)求函數f(x)的最小正周期及最大值;
(2)將函數y=f(x)的圖象通過怎樣的變換得到y(tǒng)=cosx的圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

5.已知函數y=$\sqrt{{x^2}-9}$的定義域為集合A,集合B={x|x-a<0,a∈R}.
(Ⅰ)求集合A;
(Ⅱ)求A∩B.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

12.已知拋物線C:y2=2px(p>0),其焦點為F(1,0),過F作斜率為k的直線交拋物線C于A、B兩點,交其準線于P點.
(Ⅰ)求P的值;
(Ⅱ)設|PA|+|PB|=λ|PA|•|PB|•|PF|,若k∈[$\frac{1}{4}$,1],求實數λ的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

9.異面直線a,b成60°,直線c⊥a,則直線b與c所成的角的范圍為[30°,90°].

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

10.如果P1,P2,…,Pn是拋物線C:y2=8x上的點,它們的橫坐標依次為x1,x2,…,xn,F是拋物線C的焦點,若x1+x2+…+xn=8,則|P1F|+|P2F|+…+|PnF|=( 。
A.n+10B.n+8C.2n+10D.2n+8

查看答案和解析>>

同步練習冊答案