5.已知函數(shù)y=$\sqrt{{x^2}-9}$的定義域?yàn)榧螦,集合B={x|x-a<0,a∈R}.
(Ⅰ)求集合A;
(Ⅱ)求A∩B.

分析 (Ⅰ)根據(jù)根式函數(shù)有意義的條件可得x2-9≥0,從而可求集合A;
(Ⅱ)根據(jù)a的范圍討論可得集合B的范圍,即可求得A∩B.

解答 解:(Ⅰ)令x2-9≥0,
∴x≥3或x≤-3,
所以A={x|x≥3或x≤-3};
(Ⅱ)B={x|x-a<0}={x|x<a}
①若a≤-3時(shí),A∩B={x|x<a};
②若-3<a≤3時(shí),A∩B={x|x≤-3};
③若a>3時(shí),A∩B={x|x≤-3或3≤x<a}.
綜上所述:當(dāng)a≤-3時(shí),A∩B={x|x<a};
當(dāng)-3<a≤3時(shí),A∩B={x|x≤-3};
當(dāng)a>3時(shí),A∩B={x|x≤-3或3≤x<a}.

點(diǎn)評(píng) 本題主要考查了定義域及交集的求解,考查分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)試題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.拋物線C:x2=2y的焦點(diǎn)是F,M是拋物線C上任意一點(diǎn),過M,F(xiàn),O(O為坐標(biāo)原點(diǎn))三點(diǎn)的圓的圓心為Q,若直線MQ與拋物線C相切于點(diǎn)M,則點(diǎn)M的坐標(biāo)為M$(±\sqrt{2},1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線y2=2px(p>0),AB為過拋物線焦點(diǎn)F的弦,AB的中垂線交拋物線E于點(diǎn)M、N.若A、M、B、N四點(diǎn)共圓,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.雙曲線$\frac{x^2}{16}$-$\frac{y^2}{9}$=1的離心率為(  )
A.$\frac{5}{4}$B.$\frac{{\sqrt{7}}}{4}$C.$\frac{3}{4}$D.$\frac{{\sqrt{7}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在直三棱柱ABC-A1B1C1中,AC⊥BC,點(diǎn)D是AB的中點(diǎn).求證:
(1)AC1∥平面B1CD;
(2)AC⊥BC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在△ABC中,AC=4,M為AC的中點(diǎn),BM=3,則$\overrightarrow{BC}$•$\overrightarrow{BA}$=5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.給出下面類比推理命題(其中Q為有理數(shù)集,R為實(shí)數(shù)集,C為復(fù)數(shù)集)
①若“a,b∈R,則a-b>0⇒a>b”類比推出“a,b∈C,則a-b>0⇒a>b”;
②“若a,b∈R,則a•b∈R”類比推出“若a,b∈C,則a•b∈C″;
③由向量$\overrightarrow a$的性質(zhì)|$\overrightarrow a$|2=${\overrightarrow a^2}$,可以類比得到復(fù)數(shù)z的性質(zhì):|z|2=z2;
④“若a,b,c,d∈R,則a+bi=c+di⇒a=c,b=d”類比推出“若a,b,c,d∈Q,則a+b$\sqrt{2}$=c+d$\sqrt{2}$⇒a=c,b=d”;
其中類比結(jié)論正確的個(gè)數(shù)是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知拋物線的方程為標(biāo)準(zhǔn)方程,焦點(diǎn)在x軸上,其上點(diǎn)P(-3,m)到焦點(diǎn)F1的距離為5,則拋物線方程為( 。
A.y2=8xB.y2=-8xC.y2=4xD.y2=-4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.復(fù)數(shù)Z=1+i,則$\frac{1}{Z}$+Z對(duì)應(yīng)的點(diǎn)所在象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊(cè)答案