9.兩個(gè)半徑都是1的球O1和球O2相切,且均與直二面角α-l-β的兩個(gè)半平面都相切,另有一個(gè)半徑為γ(γ<1)的小球O與這二面角的兩個(gè)半平面也都相切,同時(shí)與球O1和球O2都外切,則γ的值為3-$\sqrt{7}$.

分析 兩個(gè)單位立方體構(gòu)成直二面角,建立空間坐標(biāo)系,利用向量法能求出結(jié)果.

解答 解:如圖為兩個(gè)單位立方體構(gòu)成,圖中的左側(cè)面和底面構(gòu)成題目中的直二面角,

O1、O2為單位球的球心,小球O在MN上.
設(shè)OH=r,則有:OO1=OO2=r+1,才能滿足外切條件.
如圖,為M為原點(diǎn)建立空間坐標(biāo)系,各點(diǎn)坐標(biāo)為:
O (r,0,r),O2(1,1,1)
∴OO22=(1+r)2,(1-r)2+1+(1-r)2=(1+r)2,
解得:r=3±$\sqrt{7}$,
其中r=3-$\sqrt{7}$為符合題意的解.
∴r=3-$\sqrt{7}$.
故答案為:3-$\sqrt{7}$.

點(diǎn)評(píng) 本題考查小球半徑的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意向量法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若非零向量$(\overrightarrow a-\overrightarrow b)•(\overrightarrow a+\overrightarrow b)=0,|{\overrightarrow a+\overrightarrow b}|=\sqrt{3}|{\overrightarrow a}|$,則$\overrightarrow a,\overrightarrow b$的夾角為$\frac{π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若函數(shù)y=x2的圖象在點(diǎn)(2,4)處的切線與兩坐標(biāo)軸所圍成的三角形面積為$\frac{n}{2}$,則二項(xiàng)式(1-$\frac{n}{x}$)n的展開(kāi)式中$\frac{1}{{x}^{2}}$的系數(shù)為96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=sin(2x+$\frac{π}{3}$)+sin(2x-$\frac{π}{3}$)+$\sqrt{3}$cos2x-m,x∈R,且f(x)的最大值為1.
(1)求m的值;
(2)求f(x)的周期以及單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某校采用系統(tǒng)抽樣方法,從高一800多名學(xué)生中抽50名調(diào)查牙齒健康狀況.現(xiàn)將800名學(xué)生從1到800進(jìn)行編號(hào),在1~16中隨機(jī)抽取一個(gè)數(shù),如果抽到的是7,則從33~48這一組中應(yīng)取的數(shù)是( 。
A.37B.38C.39D.40

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已正知方體ABCD-A1B1C1D1的棱長(zhǎng)為1,點(diǎn)P是平面AA1D1D的中心,點(diǎn)Q是B1D1上一點(diǎn),且PQ∥平面AB1D,則線段PQ長(zhǎng)為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知兩直線l1:x+y-2=0與l2:2x+y+2=0的交點(diǎn)P,求滿足下列條件的直線方程:
(1)過(guò)點(diǎn)P且過(guò)原點(diǎn)的直線方程;
(2)過(guò)點(diǎn)P且垂直于直線l3:x-3y-1=0的直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.等差數(shù)列{an}中,Sn表示數(shù)列{an}的前n項(xiàng)和,且S9=a4+a5+a6+66,則a2+a8=22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在各項(xiàng)為正數(shù)的等比數(shù)列{an}中,若an+2=an+1+2an(n∈N*),則公比q=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案