11.在棱長為1的正方體ABCD-A1B1C1D1中,點P是正方體棱上的一點(不包括棱的點),且滿足|PB|+|PD1|=2,則點P的個數(shù)為6.

分析 P應(yīng)是橢圓與正方體與棱的交點,滿足條件的點應(yīng)該在棱B1C1,C1D1,CC1,AA1,AB,AD上各有一點滿足條件,由此能求出結(jié)果.

解答 解:∵正方體ABCD-A1B1C1D1的棱長為1,
∴AC1=$\sqrt{3}$,
∵|PA|+|PC1|=2,
∴點P是以2c=$\sqrt{3}$為焦距,以a=1為長半軸,以$\frac{1}{2}$為短半軸的橢圓,
∵P在正方體的棱上,
∴P應(yīng)是橢圓與正方體與棱的交點,
結(jié)合正方體的性質(zhì)可知,
滿足條件的點應(yīng)該在棱B1C1,C1D1,CC1,AA1,AB,AD上各有一點滿足條件.
故答案為:6.

點評 本題考查滿足條件的點的個數(shù)的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知菱形ABCD的邊長為4,∠DAB=60°,$\overrightarrow{EC}$=3$\overrightarrow{DE}$,則 $\overrightarrow{AE}•\overrightarrow{BE}$的值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列判斷正確的是②④.(把正確的序號都填上)
①集合A={(x,y)|x+y=5},B={(x,y)|x-y=-1},則A∩B={2,3};
②設(shè)f(x)定義在R上的函數(shù),且對任意m,n有f(m+n)=f(m)•f(n),且當(dāng)x>0時,0<f(x)<1,則f(0)=1,且當(dāng)x<0時,有f(x)>1;
③已知函數(shù)f(x)=$\frac{{\root{3}{3x-1}}}{{a{x^2}+ax-3}}$的定義域是R,則實數(shù)a的取值范圍是-12<a<0;
④函數(shù)y=-log2x滿足對定義域內(nèi)任意的x1,x2,都有$f(\frac{{{x_1}+{x_2}}}{2})≤\frac{{f({x_1})+f({x_2})}}{2}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=|x2-1|+x2-kx.
(1)若k=2時,求出函數(shù)f(x)的單調(diào)區(qū)間及最小值;
(2)若f(x)≥0恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在平面直角坐標(biāo)系中,方程$\frac{|x+y|}{2}$+|x-y|=1所表示的曲線為( 。
A.三角形B.正方形
C.非正方形的長方形D.非正方形的菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.與角-$\frac{5π}{8}$終邊相同的角是( 。
A.$\frac{3π}{8}$B.$\frac{7π}{8}$C.$\frac{11π}{8}$D.$\frac{21π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,有以下命題:
①當(dāng)k=-$\frac{1}{2}$時,函數(shù)f(x)在(0,$\frac{1}{2}}$)上單調(diào)遞增;
②當(dāng)k≥0時,函數(shù)f(x)在(0,+∞)上有極大值;
③當(dāng)-$\frac{1}{2}$<k<0時,函數(shù)f(x)在($\frac{1}{2}$,+∞)上單調(diào)遞減;
④當(dāng)k<-$\frac{1}{2}$時,函數(shù)f(x)在(0,+∞)上有極大值f(${\frac{1}{2}}$),有極小值f(-k).
其中正確命題的序號是( 。
A.①③B.②④C.①④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.計算:$\underset{lim}{x→∞}(\frac{x}{1+x})^{x}$=$\frac{1}{e}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)f(x)是連續(xù)的偶函數(shù),且當(dāng)x>0時是單調(diào)函數(shù),則滿足f(x)=f($\frac{x+1}{2x+4}$)的所有x之和為( 。
A.-$\frac{3}{2}$B.-$\frac{5}{2}$C.-4D.4

查看答案和解析>>

同步練習(xí)冊答案