如圖,在正三棱柱ABC-A1B1C1中,若各條棱長均為2,且M為A1C1的中點,則三棱錐M-AB1C的體積是
 
考點:棱柱、棱錐、棱臺的體積
專題:空間位置關(guān)系與距離
分析:VM-AB1C,利用等積法能求出三棱錐M-AB1C的體積.
解答: 解:∵在正三棱柱ABC-A1B1C1中,各條棱長均為2,且M為A1C1的中點,
∴S△AMC=
1
2
×2×2
=2,
MB1⊥平面AMC,且B1M=
4-1
=
3
,
VM-AB1C=VB1-AMC=
1
3
×B1S△AMC

=
1
3
×
3
×2
=
2
3
3

故答案為:
2
3
3
點評:本題考查三棱錐M-AB1C的體積的求法,是中檔題,解題時要注意等積法的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2lnx-
1
2
ax2-3x,其中a為常數(shù).若當(dāng)x=1時,f(x)取得極值,求a的值,并求出f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足:f(x)=f(4-x)且f(2-x)+f(x-2)=0,若f(2)=1,則f(2014)的值是( 。
A、-1B、0C、1D、無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b(a,b∈N*)滿足
1
a
+
9
b
=1
,則當(dāng)a+b取最小值時,a、b的值分別是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(a+1)lnx+ax2+1,討論函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是R上的奇函數(shù),且當(dāng)x>0時,f(x)=lg(x2-ax+10),a∈R.
(1)若f(1)=1,求f(x)的解析式;
(2)若a=0,不等式f(k•2x)+f(4x+k+1)>0恒成立,求實數(shù)k的取值范圍;
(3)若f(x)的值域為R,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(幾何法)已知圓x2+y2+x-6y+m=0和直線x+2y-3=0交于P、Q兩點,且OP⊥OQ(O為坐標原點),求該圓的圓心坐標及半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓C的方程為 (x-1)2+y2=1,設(shè)O為坐標原點,點M(x0,y0)在C上運動,點P(x,y)是線段OM的中點,則點P的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin(2x+
π
6
)-4cos2x+2,
(1)求函數(shù)f(x)的單調(diào)減區(qū)間;
(2)若x∈[
4
,π]求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習(xí)冊答案