分析 (Ⅰ)推導(dǎo)出∠ACB=45°,從而∠ACD=45°,進(jìn)而四邊形ABFE是平行四邊形,推導(dǎo)出AC⊥EF,PA⊥EF,從而EF⊥平面PAC,由此能證明平面PEF⊥平面PAC.
(Ⅱ)由PA⊥AC,AC⊥AB,知AC⊥平面PAB,則∠APC為直線PC與平面PAB所成的角,取BC的中點(diǎn)為G,連接AG,則AG⊥BC,以A為坐標(biāo)原點(diǎn),建立空間直角坐標(biāo)系A(chǔ)-xyz,利用向量法能求出直線PC與平面PAB所成的角.
解答 (Ⅰ)證明:∵AB⊥AC,AB=AC,∴∠ACB=45°,
∵底面ABCD是直角梯形,∠ADC=90°,AD∥BC,
∴∠ACD=45°,即AD=CD,
∴$BC=\sqrt{2}AC=2AD$,
∵AE=2ED,CF=2FB,∴$AE=BF=\frac{2}{3}AD$,
∴四邊形ABFE是平行四邊形,則AB∥EF,
∴AC⊥EF,
∵PA⊥底面ABCD,∴PA⊥EF,
∵PA∩AC=A,
∴EF⊥平面PAC,∵EF?平面PEF,
∴平面PEF⊥平面PAC.
(Ⅱ)解:∵PA⊥AC,AC⊥AB,
∴AC⊥平面PAB,
則∠APC為直線PC與平面PAB所成的角,
若PC與平面PAB所成夾角為45°,則$tan∠APC=\frac{AC}{PA}=1$,即$PA=AC=\sqrt{2}$,
取BC的中點(diǎn)為G,連接AG,則AG⊥BC,以A為坐標(biāo)原點(diǎn)建立如圖所示的空間直角坐標(biāo)系A(chǔ)-xyz,
則B(1,-1,0),C(1,1,0),$E(0,\frac{2}{3},0)$,$P(0,0,\sqrt{2})$,
∴$\overrightarrow{EB}=(1,-\frac{5}{3},0)$,$\overrightarrow{EP}=(0,-\frac{2}{3},\sqrt{2})$,
設(shè)平面PBE的法向量$\overrightarrow n=(x,y,z)$,則$\left\{\begin{array}{l}\overrightarrow n•\overrightarrow{EB}=0\\ \overrightarrow n•\overrightarrow{EP}=0\end{array}\right.$即$\left\{\begin{array}{l}x-\frac{5}{3}y=0\\-\frac{2}{3}y+\sqrt{2}z=0\end{array}\right.$
令y=3,則x=5,$z=\sqrt{2}$,∴$\overrightarrow n=(5,3,\sqrt{2})$,
∵$\overrightarrow{AC}=(1,1,0)$是平面PAB的一個(gè)法向量,
∴$cos<\overrightarrow n,\overrightarrow{AC}>=\frac{5+3}{{\sqrt{2}×6}}=\frac{{2\sqrt{2}}}{3}$,
即當(dāng)二面角A-PB-E的余弦值為$\frac{{2\sqrt{2}}}{3}$時(shí),直線PC與平面PAB所成的角為45°.
點(diǎn)評(píng) 本題考查面面垂直的證明,考查二面角的余弦值的求法,考查推理論證能力、運(yùn)算求解能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{2}{3}$ | C. | $\frac{2\sqrt{5}}{5}$ | D. | -$\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,2-$\sqrt{2}$] | B. | [2-$\sqrt{2}$,+∞) | C. | (-∞,2-$\sqrt{2}$) | D. | (2-$\sqrt{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com