6.如圖是某市3月1日至14日的空氣質(zhì)量指數(shù)趨勢(shì)圖,空氣質(zhì)量指數(shù)小于100表示空氣質(zhì)量?jī)?yōu)良,空氣質(zhì)量指數(shù)大于200表示空氣重度污染,某人隨機(jī)選擇3月1日至3月13日中的某一天到達(dá)該市,并停留2天.
(Ⅰ)求此人到達(dá)當(dāng)日空氣重度污染的概率.
(Ⅱ)設(shè)X是此人停留期間空氣質(zhì)量?jī)?yōu)良的天數(shù),求X的分布列與數(shù)學(xué)期望.

分析 (Ⅰ)設(shè)Ai表示“此人于3月i日到達(dá)該市”,(i=1,2,…,13),根據(jù)題意,P(Ai)=$\frac{1}{13}$,且Aij=∅(i≠j),設(shè)B為事件“此人到達(dá)當(dāng)日空氣重度污染”,則B=A5∪A8,由此能求出此人到達(dá)當(dāng)日空氣重度污染的概率.
(Ⅱ)由題意知X的所有可能取值為0,1,2,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.

解答 解::(Ⅰ)設(shè)Ai表示“此人于3月i日到達(dá)該市”,(i=1,2,…,13),
根據(jù)題意,P(Ai)=$\frac{1}{13}$,且Aij=∅(i≠j),
設(shè)B為事件“此人到達(dá)當(dāng)日空氣重度污染”,則B=A5∪A8,
∴此人到達(dá)當(dāng)日空氣重度污染的概率:
P(B)=P(A5)+P(A8)=$\frac{1}{13}$+$\frac{1}{13}$=$\frac{2}{13}$.
(Ⅱ)由題意知X的所有可能取值為0,1,2,
P(X=1)=P(A3∪A6∪A7∪A11)=$\frac{4}{13}$,
P(X=2)=P(A1∪A2∪A12∪A13)=$\frac{4}{13}$,
P(X=0)=1-P(X=1)-P(X=2)=$\frac{5}{13}$,
∴X的分布列為:

X012
P$\frac{5}{13}$$\frac{4}{13}$$\frac{4}{13}$
EX=$0×\frac{5}{13}$+$1×\frac{4}{13}$+2×$\frac{4}{13}$=$\frac{12}{13}$.

點(diǎn)評(píng) 本題考查了離散型隨機(jī)變量的概率計(jì)算及其分布列、數(shù)學(xué)期望、古典概率計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.世園會(huì)期間,某班有四名學(xué)生參加了志愿工作.將這四名學(xué)生分配到A,B,C三個(gè)不同的展館服務(wù),每個(gè)展館至少分配一人.則四人中學(xué)生甲不到A館的概率為(  )
A.1B.$\frac{5}{6}$C.$\frac{2}{3}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.一個(gè)總體中的80個(gè)個(gè)體編號(hào)為0,1,2,…,79,并依次將其分為8個(gè)組,組號(hào)為0,1,…,9,要用(錯(cuò)位)系統(tǒng)抽樣的方法抽取一個(gè)容量為8的樣本,即規(guī)定先在第1組隨機(jī)抽取一個(gè)號(hào)碼,記為i,依次錯(cuò)位地得到后面各組的號(hào)碼,即第k組中抽取個(gè)位數(shù)為i+k(當(dāng)i+k<10)或i+k-10(當(dāng)i+k≥10)的號(hào)碼,在i=6時(shí),所抽到的第8組的號(hào)碼是74.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知直線l:x-y-4=0和圓C:x2+y2+2x-2y=0
(1)試判斷直線l與圓C的位置關(guān)系
(2)求與直線l和圓C都相切的半徑最小的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.長(zhǎng)方體ABCD-A1B1C1D1中,已知AA1=3,AB=AD=2,棱AD在平面α內(nèi),則長(zhǎng)方體在平面α內(nèi)的射影所構(gòu)成的圖形面積的取值范圍是$4≤S≤2\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=1+$\frac{2}{{2}^{x}-1}$.
(Ⅰ)求f(x)的定義域;
(Ⅱ)判斷f(x)的奇偶性,并證明;
(Ⅲ)求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.某企業(yè)有甲、乙兩個(gè)研發(fā)小組,他們研發(fā)一件新產(chǎn)品成功的概率分別為$\frac{3}{4}$和$\frac{2}{3}$,本年度計(jì)劃研發(fā)的新產(chǎn)品件數(shù)分別為2件和1件.設(shè)甲、乙兩組的每次研發(fā)均相互獨(dú)立.
(1)求該企業(yè)本年度至少有一件新產(chǎn)品研發(fā)成功的概率;
(2)已知研發(fā)一件新產(chǎn)品的成本為10百萬(wàn)元,成功研發(fā)一件新產(chǎn)品可獲得50百萬(wàn)元的銷售額,求該企業(yè)本年度在這3件新產(chǎn)品上獲得的利潤(rùn)X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知角α的終邊經(jīng)過(guò)點(diǎn)P(-1,1),則cosα的值為( 。
A.1B.-1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.在極坐標(biāo)系中,圓心在($\sqrt{2}$,π)且過(guò)極點(diǎn)的圓的方程為( 。
A.ρ=2$\sqrt{2}$cos θB.ρ=-2$\sqrt{2}$cos θC.ρ=2$\sqrt{2}$sin θD.ρ=-2$\sqrt{2}$sin θ

查看答案和解析>>

同步練習(xí)冊(cè)答案