分析 由題意,四邊形ABCD和ADD1A1的面積分別為4和6,長(zhǎng)方體在平面α內(nèi)的射影可由這兩個(gè)四邊形在平面α內(nèi)的射影組合而成.分別求出最小與最大,即可求出長(zhǎng)方體在平面α內(nèi)的射影所構(gòu)成的圖形面積的取值范圍.
解答 解:由題意,四邊形ABCD和ADD1A1的面積分別為4和6,
長(zhǎng)方體在平面α內(nèi)的射影可由這兩個(gè)四邊形在平面α內(nèi)的射影組合而成.顯然,Smin=4.
若記平面ABCD與平面α所成角為θ,則平面ADD1A1與平面α所成角為$\frac{π}{2}$-θ.
它們?cè)谄矫姒羶?nèi)的射影分別為4cosθ和6cos($\frac{π}{2}$-θ)=6sinθ,
所以,S=4cosθ+6sinθ=2$\sqrt{13}$sin(θ+φ)(其中,tanφ=$\frac{2}{3}$),
因此,Smax=2$\sqrt{13}$,當(dāng)且僅當(dāng)θ=$\frac{π}{2}$-φ時(shí)取到.
因此$4≤S≤2\sqrt{13}$.
故答案為:$4≤S≤2\sqrt{13}$.
點(diǎn)評(píng) 本題考查長(zhǎng)方體在平面α內(nèi)的射影所構(gòu)成的圖形面積的取值范圍,考查三角函數(shù)知識(shí),屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-∞,1] | B. | [-1,0) | C. | (0,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=($\sqrt{x}$)2 | B. | y=$\sqrt{{x}^{2}}$ | C. | y=$\left\{\begin{array}{l}{x,(x>0)}\\{-x,(x<0)}\end{array}\right.$ | D. | y=x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{4}$ | B. | $\frac{1}{16}$ | C. | $\frac{3}{1024}$ | D. | $\frac{1}{256}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com