A. | $\frac{\sqrt{3}}{3}$ | B. | 1 | C. | $\frac{2\sqrt{3}}{3}$ | D. | $\sqrt{3}$ |
分析 說(shuō)明幾何體是正方體,然后證明BD1⊥平面AB1C,再計(jì)算BO的長(zhǎng),即可求得D1到平面ACB1的距離.
解答 解:正四棱柱ABCD-A1B1C1D1的底面邊長(zhǎng)為1,AB1與底面ABCD成45°角,
可知幾何體是正方體,
連接BD1,BD,則AC⊥BD,AC⊥B1B
∵BD∩B1B=B,∴AC⊥平面BD1,
∵BD1?平面BD1,∴AC⊥BD1,
同理AB1⊥BD1,
∵AC∩AB1=A,∴BD1⊥平面AB1C
設(shè)垂足為O,在三棱錐B1-ABC中,$\frac{1}{3}$×$\frac{1}{2}$a×a×a=$\frac{1}{3}$×$\frac{\sqrt{3}}{4}$×2a2×BO
∴BO=$\frac{\sqrt{3}}{3}$a
∵BD1=$\sqrt{3}$a
∴D1O=$\frac{2\sqrt{3}}{3}$a
即D1到平面ACB1的距離為$\frac{2\sqrt{3}}{3}$a
故選:C.
點(diǎn)評(píng) 本題考查點(diǎn)到面的距離的計(jì)算,考查線面垂直的證明與三棱錐的體積,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x1)<0,f(x2)<0 | B. | f(x1)<0,f(x2)>0 | C. | f(x1)>0,f(x2)<0 | D. | f(x1)>0,f(x2)>0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | a-$\frac{3}{2}$ | B. | 0 | C. | 2a-3 | D. | -2a+3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:2 | B. | 1:3 | C. | 1:$\sqrt{2}$ | D. | 1:4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-4,32] | B. | [12,21] | C. | [21,32] | D. | [12,32] |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com