分析 (1)利用余弦定理表示出cosC,利用面積公式表示出S,整理后代入已知等式求出tanC的值,即可確定出C的度數(shù);
(2)由已知面積S,求出ab的值,將c,S的值代入已知等式,利用完全平方公式變形后把a(bǔ)b的值代入求出a+b的值即可.
解答 解:(1)∵cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$,即a2+b2-c2=2abcosC,S=$\frac{1}{2}$absinC,
∴已知等式變形得:2abcosC=$\frac{4\sqrt{3}}{3}$×$\frac{1}{2}$absinC,
整理得:tanC=$\sqrt{3}$,
則C=$\frac{π}{3}$;
(2)∵c=$\sqrt{3}$,S=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{2}$,即ab=2,
∴a2+b2-3=$\frac{4\sqrt{3}}{3}$×$\frac{\sqrt{3}}{2}$,即a2+b2=5,
∴(a+b)2-2ab=5,即(a+b)2=9,
則a+b=3.
點(diǎn)評(píng) 此題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握定理及公式是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\left\{{x\left|{-\sqrt{3}<x<0}\right.}\right\}$ | B. | $\left\{{x\left|{-\sqrt{3}<x<2}\right.}\right\}$ | C. | $\left\{{x\left|{0<x<\sqrt{3}}\right.}\right\}$ | D. | {x|-2<x<0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{6}+2}{4}$ | B. | $\frac{\sqrt{6}+\sqrt{2}}{4}$ | C. | $\sqrt{6}$+2 | D. | $\sqrt{6}$+$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3x+4y-1=0 | B. | 3x+4y+9=0或x=1 | C. | 3x+4y+9=0 | D. | 3x+4y-1=0或x=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 4 | B. | 12 | C. | 2 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com