A. | (a2+a3-a1,b2+b3-b1) | B. | (b2+b3-b1,a2+a3-a1) | ||
C. | (a2+a3-2a1,b2+b3-2b1) | D. | (b2+b3-2b1,a2+a3-2a1) |
分析 對于向量$\frac{1}{2}$($λ\overrightarrow{PA}$+$μ\overrightarrow{PB}$)=$\frac{1}{2}$(λa2+μa3-(λ+μ)a1,λb2+μb3-(λ+μ)b1),取λ=μ=2,即可判斷出結(jié)論.
解答 解:向量$\frac{1}{2}$($λ\overrightarrow{PA}$+$μ\overrightarrow{PB}$)=$\frac{1}{2}$(λa2+μa3-(λ+μ)a1,λb2+μb3-(λ+μ)b1),
由實數(shù)λ,μ滿足λ+μ=λμ≠0,
可取λ=μ=2,可得:向量$\frac{1}{2}$($λ\overrightarrow{PA}$+$μ\overrightarrow{PB}$)=(a2+a3-2a1,b2+b3-2b1),
故選:C.
點評 本題考查了向量平行四邊形法則、向量坐標(biāo)運算性質(zhì),考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com