20.已知點(diǎn)P是拋物線x=$\frac{1}{4}$y2上的一個(gè)動(dòng)點(diǎn),則點(diǎn)P到點(diǎn)A(0,2)的距離與點(diǎn)P到y(tǒng)軸的距離之和的最小值為(  )
A.2B.$\sqrt{5}$C.$\sqrt{5}$-1D.$\sqrt{5}$+1

分析 先求出拋物線的焦點(diǎn)坐標(biāo),再由拋物線的定義轉(zhuǎn)化求解即可.

解答 解:拋物線x=$\frac{1}{4}$y2,可得:y2=4x,拋物線的焦點(diǎn)坐標(biāo)(1,0).
依題點(diǎn)P到點(diǎn)A(0,2)的距離與點(diǎn)P到y(tǒng)軸的距離之和的最小值,就是P到(0,2)與P到該拋物線準(zhǔn)線的距離的和減去1.
由拋物線的定義,可得則點(diǎn)P到點(diǎn)A(0,2)的距離與P到該拋物線焦點(diǎn)坐標(biāo)的距離之和減1,
可得:$\sqrt{(0-1)^{2}+(2-0)^{2}}$-1=$\sqrt{5}-1$.
故選:C.

點(diǎn)評(píng) 本小題主要考查拋物線的定義解題,考查了拋物線的應(yīng)用,考查了學(xué)生轉(zhuǎn)化和化歸,數(shù)形結(jié)合等數(shù)學(xué)思想.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.如圖,已知正方體ABCD-A1B1C1D1棱長(zhǎng)為8,點(diǎn)H在棱AA1上,且HA1=2,在側(cè)面BCC1B1內(nèi)作邊長(zhǎng)為2的正方形EFGC1,P是側(cè)面BCC1B1內(nèi)一動(dòng)點(diǎn)且點(diǎn)P到平面CDD1C1距離等于線段PF的長(zhǎng),則當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),|HP|2的最小值是( 。
A.87B.88C.89D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.“斐波那契數(shù)列”是數(shù)學(xué)史上一個(gè)著名數(shù)列,在斐波那契數(shù)列{an}中,a1=1,a2=1,an+2=an+1+an(n∈N*)則a8=21;若a2018=m2+1,則數(shù)列{an}的前2016項(xiàng)和是m2.(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在[-6,9]內(nèi)任取一個(gè)實(shí)數(shù)m,設(shè)f(x)=-x2+mx+m-$\frac{5}{4}$,則函數(shù)f(x)的圖象與x軸有公共點(diǎn)的概率等于$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.拋物線y=-2x2的準(zhǔn)線方程為y=$\frac{1}{8}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知矩陣A=$[{\begin{array}{l}1&0\\ 0&2\end{array}}]$,B=$[{\begin{array}{l}1&1\\ 0&1\end{array}}]$.
(1)求矩陣AB;
(2)求矩陣AB的逆矩陣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若a1+a3+a5=3,則S5的值為( 。
A.5B.7C.9D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在正三棱柱ABC-A1B1C1中,已知AB=CC1=2,則異面直線AB1和BC1所成角的余弦值為(  )
A.0B.$\frac{1}{3}$C.-$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.盒中裝有7個(gè)零件,其中4個(gè)是沒(méi)有使用過(guò)的,3個(gè)是使用過(guò)的.
(Ⅰ)從盒中每次隨機(jī)抽取1個(gè)零件,有放回的抽取3次(不使用),求3次抽取中恰有2次抽到使用過(guò)零件的概率;
(Ⅱ)從盒中任意抽取3個(gè)零件,使用后放回盒子中,設(shè)X為盒子中使用過(guò)零件的個(gè)數(shù),求X的分布列和期望.

查看答案和解析>>

同步練習(xí)冊(cè)答案