9.在正三棱柱ABC-A1B1C1中,已知AB=CC1=2,則異面直線AB1和BC1所成角的余弦值為( 。
A.0B.$\frac{1}{3}$C.-$\frac{1}{3}$D.$\frac{1}{4}$

分析 以A為原點,在平面ABC中過A作AC的垂直為x軸,以AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線AB1和BC1所成角的余弦值.

解答 解:∵在正三棱柱ABC-A1B1C1中,AB=CC1=2,
∴以A為原點,在平面ABC中過A作AC的垂直為x軸,
以AC為y軸,AA1為z軸,建立空間直角坐標(biāo)系,
則A(0,0,0),B1($\sqrt{3}$,1,2),B($\sqrt{3}$,1,0),C1(0,2,2),
$\overrightarrow{A{B}_{1}}$=($\sqrt{3},1,2$),$\overrightarrow{B{C}_{1}}$=(-$\sqrt{3}$,1,2),
設(shè)異面直線AB1和BC1所成角為θ,
則cosθ=$\frac{|\overrightarrow{A{B}_{1}}•\overrightarrow{B{C}_{1}}|}{|\overrightarrow{A{B}_{1}}|•|\overrightarrow{B{C}_{1}}|}$=$\frac{2}{\sqrt{8}•\sqrt{8}}$=$\frac{1}{4}$.
∴異面直線AB1和BC1所成角的余弦值為$\frac{1}{4}$.
故選:D.

點評 本題考查異面直線所成角的余弦值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意向量法的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點,且EH∥FG.求證:
(1)EH∥面BCD;
(2)EH∥BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點P是拋物線x=$\frac{1}{4}$y2上的一個動點,則點P到點A(0,2)的距離與點P到y(tǒng)軸的距離之和的最小值為( 。
A.2B.$\sqrt{5}$C.$\sqrt{5}$-1D.$\sqrt{5}$+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.現(xiàn)有6張不同的卡片,其中紅色、黃色卡片各3張,從中任取2張,則這2張卡片不同顏色的概率為( 。
A.$\frac{3}{10}$B.$\frac{1}{5}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.拋物線y2=$\frac{1}{4}$x的焦點到準(zhǔn)線的距離為( 。
A.1B.$\frac{1}{16}$C.$\frac{1}{2}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知拋物線y2=2px(p>0),過點Q(4,0)作動直線l交拋物線于A,B兩點,且OA⊥OB(O為坐標(biāo)原點).
(Ⅰ)求拋物線的方程;
(Ⅱ)若對點P(t,0),恒有∠APQ=∠BPQ,求實數(shù)t的值及△PAB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若(1+x)+(1+x)2+(1+x)3+(1+x)4+…+(1+x)7=a0+a1x+a2x2+…+a7x7
(1)求a0+a1+a2+…+a7
(2)求a1+a3+a5+a7的值;
(3)求a3的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某程序如圖示,則運行后輸出的結(jié)果是( 。
A.0.8B.0.6C.0.4D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若點H(-2,4)在拋物線y2=2px的準(zhǔn)線上,則實數(shù)p的值為4.

查看答案和解析>>

同步練習(xí)冊答案