分析 可以把函數(shù)理解為點(diǎn)(cosx,sinx)到點(diǎn)(2,-2)的直線斜率的范圍,利用數(shù)形結(jié)合的思想,求得過點(diǎn)(2,-2)的直線與單位圓相切時(shí)直線的斜率,進(jìn)而求得函數(shù)f(x)的值域.
解答 解:可以把函數(shù)理解為點(diǎn)(cosx,sinx)到點(diǎn)(2,-2)的直線斜率的范圍,
而(cosx,sinx)的點(diǎn)的集合為以原點(diǎn)為圓心,半徑為1的圓,如圖:
當(dāng)過點(diǎn)(2,-2)的直線的斜率不存在時(shí),不與圓相切,
設(shè)此直線的方程為y+2=k(x-2),整理得y-kx+2k+2=0,①
圓的方程為x2+y2=1,②
圓心到直線的距離為$\frac{|2k+2|}{\sqrt{1+{k}^{2}}}$=1,整理求得k=$\frac{-4±\sqrt{7}}{3}$,
∴y=$\frac{sinx+2}{cosx-2}$的值域?yàn)閇$\frac{-4-\sqrt{7}}{3}$,$\frac{-4+\sqrt{7}}{3}$].
故答案為:[$\frac{-4-\sqrt{7}}{3}$,$\frac{-4+\sqrt{7}}{3}$].
點(diǎn)評(píng) 本題主要考查了直線與圓的位置關(guān)系,三角函數(shù)化簡(jiǎn)求值的問題.考查了學(xué)生轉(zhuǎn)化與化歸思想的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2$\sqrt{2}$ | C. | $\frac{3}{2}$+$\sqrt{2}$ | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期是2π | B. | 函數(shù)f(x)在定義域內(nèi)是奇函數(shù) | ||
C. | 函數(shù)f(x)在區(qū)間[0,$\frac{π}{2}$]上是減函數(shù) | D. | 函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{π}{4}$對(duì)稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com