20.若直線l經(jīng)過點A(2,-3)和B(-1,3),則直線l的斜率是( 。
A.-2B.$-\frac{1}{2}$C.0D.2

分析 利用斜率計算公式即可得出.

解答 解:直線l的斜率=$\frac{-3-3}{2-(-1)}$=-2,
故選:A.

點評 本題考查了斜率計算公式,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知關(guān)于x的方程x2-(k+1)x+$\frac{1}{4}$k2+1=0,根據(jù)下列條件,分別求出k的值.
(1)方程兩實根的積為5;
(2)方程的兩實根x1,x2滿足|x1|=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知{an}是等比數(shù)列,a2=$\frac{1}{2}$,a5=4,則a1a2+a2a3+…+anan+1=( 。
A.$\frac{1}{8}$(2n-1)B.$\frac{1}{24}$(2n+4)C.$\frac{1}{24}$(4n-1)D.$\frac{1}{16}$(4n-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合M={x|x2-4x+3<0},N={x|2x≤8},則M∩N=( 。
A.(1,3]B.(0,3]C.(-∞,3]D.(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=lnx-$\frac{(x-1)^{2}}{2}$.求函數(shù)f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:
x1245
y1m5.58
若由資料可知y對x呈線性相關(guān)關(guān)系,y與x的線性回歸方程$\stackrel{∧}{y}$=bx+a必過的點是(3,4),則m值為( 。
A.1.8B.5C.2D.1.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.設(shè)D為△ABC所在平面內(nèi)的一點,且滿足$\overrightarrow{BC}=2\overrightarrow{CD}$,則( 。
A.$\overrightarrow{AD}=\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$B.$\overrightarrow{AD}=-\frac{1}{2}\overrightarrow{AB}+\frac{3}{2}\overrightarrow{AC}$C.$\overrightarrow{AD}=-\frac{3}{2}\overrightarrow{AB}+\frac{1}{2}\overrightarrow{AC}$D.$\overrightarrow{AD}=\frac{3}{2}\overrightarrow{AB}-\frac{1}{2}\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.一個多面體的直觀圖及三視圖如圖1,2所示,其中 M,N 分別是 AF、BC 的中點.
(1)求證:MN∥平面 CDEF;
(2)求多面體的體積及表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)$f(x)=sin(ωx+\frac{π}{3})(ω>0)$與x軸正方向的第一個交點為(x0,0),若$\frac{π}{3}<{x_0}<\frac{π}{2}$,則ω的取值范圍為( 。
A.1<ω<2B.$\frac{4}{3}<ω<2$C.$1<ω<\frac{4}{3}$D.$1<ω<\frac{3}{2}$

查看答案和解析>>

同步練習(xí)冊答案