10.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c.已知△ABC的面積為3$\sqrt{15}$,b-c=2,cos A=-$\frac{1}{4}$,則a的值為( 。
A.4B.2C.$\sqrt{3}$D.8

分析 cos A=-$\frac{1}{4}$,可得sinA=$\sqrt{1-co{s}^{2}A}$.由$\frac{1}{2}$bcsinA=$\frac{1}{2}bc×\frac{\sqrt{15}}{4}$=$3\sqrt{15}$,b-c=2,解得b,c.再利用余弦定理即可得出.

解答 解:∵cos A=-$\frac{1}{4}$,∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{15}}{4}$.
∵$\frac{1}{2}$bcsinA=$\frac{1}{2}bc×\frac{\sqrt{15}}{4}$=$3\sqrt{15}$,b-c=2,解得b=6,c=4.
∴a2=b2+c2-2bccos A=62+42-2×$6×4×(-\frac{1}{4})$=64,
解得a=8.
故選:D.

點(diǎn)評 本題考查了三角形面積計(jì)算公式、余弦定理、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,陰影部分是由四個全等的直角三角形組成的圖形,在大正方形內(nèi)隨機(jī)取一點(diǎn),這一點(diǎn)落在小正方形內(nèi)的概率為 $\frac{1}{5}$,若直角三角形的兩條直角邊的長分別為a,b(a>b),則$\frac{a}$=( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)集合A={-1,0,1},B={a,a2},則使A∪B=A成立的a的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,四邊形ABCD為矩形,EA⊥平面ABCD,EF∥AB,AB=2AE=2EF=4.
(1)設(shè)G為BC的中點(diǎn),求證:FG∥平面BDE;
(2)求證:AF⊥平面FBC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=$\frac{x}{(x+1)(x+a)}$的圖象關(guān)于原點(diǎn)對稱,則a=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知全集U={x|x≤5},集合A={x|-3<x<4},B={x|-5≤x≤3},則(∁UA)∩B=( 。
A.{x|-5≤x≤-3}B.{x|4<x<5,或x≤-3}C.{x|-5<x<-3}D.{x|-5<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.函數(shù)f(x)=($\frac{1}{2}$)${\;}^{{x}^{2}-4x+3}$
(1)求函數(shù)f(x)的單調(diào)區(qū)間和值域;
(2)若滿足x∈[0,3],求函數(shù)f(x)的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.設(shè){an}是等比數(shù)列,公比q=$\sqrt{2}$,Sn為{an}的前n項(xiàng)和.記Tn=$\frac{17{S}_{n}-{S}_{2n}}{{a}_{n+1}}$,n∈N*,設(shè)Bn為數(shù)列{Tn}的最大項(xiàng),則n=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知曲線y=x+lnx在點(diǎn)(1,1)處的切線與曲線y=ax2+(a+2)x+1相切.求a的值.

查看答案和解析>>

同步練習(xí)冊答案