8.已知角α的終邊落在射線2x-y=0上,求$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$+sin2α-3sinαcosα的值.

分析 利用已知條件求出角的正切函數(shù)值,利用誘導(dǎo)公式化簡所求的表達(dá)式,代入求解即可.

解答 解:角α的終邊落在射線2x-y=0上,可得tanα=2.
$\frac{cos(\frac{π}{2}+α)sin(-π-α)}{cos(\frac{11π}{2}-α)sin(\frac{9π}{2}+α)}$+sin2α-3sinαcosα
=$\frac{sinαsinα}{sinαcosα}$+sin2α-3sinαcosα
=tanα+sin2α-3sinαcosα
=tanα+$\frac{ta{n}^{2}α-3tanα}{ta{n}^{2}α+1}$
=2+$\frac{4-6}{4+1}$
=$\frac{8}{5}$.

點(diǎn)評 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的化簡求值,直線的斜率與傾斜角的關(guān)系,考查計(jì)算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.對于數(shù)列{an},定義數(shù)列{an+1-an}的數(shù)列{an}的“差數(shù)列”,若a1=2,{an}的“差數(shù)列”的通項(xiàng)公式為2n
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,求S1+2S2+…+nSn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知a>$\frac{1}{2}$,且a≠1,條件p:函數(shù)f(x)=log(2a-1)x在其定義域上是減函數(shù);
條件q:函數(shù)g(x)=$\sqrt{x+|x-a|-2}$的定義域?yàn)镽,如果“p或q”為真,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在(x+$\frac{4}{x}$-4)5的展開式中x3的系數(shù)是180.(用具體數(shù)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若a=2${\;}^{\frac{1}{5}}$,b=5${\;}^{-\frac{1}{2}}$,c=$\frac{1}{2}$${∫}_{0}^{\frac{π}{2}}$cosxdx,則實(shí)數(shù)a,b,c的大小關(guān)系是( 。
A.a<b<cB.b<a<cC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知$\overrightarrow{a}$,$\overrightarrow$為同一平面內(nèi)的兩個向量,且$\overrightarrow{a}$=(1,2),|$\overrightarrow$|=$\frac{1}{2}$|$\overrightarrow{a}$|,若$\overrightarrow{a}$+2$\overrightarrow$與2$\overrightarrow{a}$-$\overrightarrow$垂直,則$\overrightarrow{a}$與$\overrightarrow$的夾角為(  )
A.0B.$\frac{π}{4}$C.$\frac{2π}{3}$D.π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.比較大。篶os125°>cos156°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.解不等式:2x2+(a+2)x+a>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知a,b∈{-2,-1,0,1,2},且a≠b,則復(fù)數(shù)z=a+bi對應(yīng)點(diǎn)在第二象限的概率為$\frac{2}{5}$.(用最簡分?jǐn)?shù)表示)

查看答案和解析>>

同步練習(xí)冊答案