【題目】已知函數(shù)的圖象如圖所示,令,則下列關(guān)于函數(shù)的說法中不正確的是( )
A. 函數(shù)圖象的對稱軸方程為
B. 函數(shù)的最大值為
C. 函數(shù)的圖象上存在點,使得在點處的切線與直線:平行
D. 方程的兩個不同的解分別為,,則最小值為
【答案】C
【解析】
根據(jù)函數(shù)f(x)的圖象求出A、T、ω和的值,寫出f(x)的解析式,求出f′(x),寫出g(x)=f(x)+f′(x)的解析式,再判斷題目中的選項是否正確.
根據(jù)函數(shù)f(x)=Asin(ωx+)的圖象知,
A=2,,
∴T=2π,ω1;
根據(jù)五點法畫圖知,
當x時,ωx+,
∴,
∴f(x)=2sin(x);
∴f′(x)=2cos(x),
∴g(x)=f(x)+f′(x)
=2sin(x)+2cos(x)
=2sin(x)
=2sin(x);
令xkπ,k∈Z,
解得xkπ,k∈Z,
∴函數(shù)g(x)的對稱軸方程為xkπ,k∈Z,A正確;
當x2kπ,k∈Z時,函數(shù)g(x)取得最大值2,B正確;
g′(x)=2cos(x),
假設(shè)函數(shù)g(x)的圖象上存在點P(x0,y0),使得在P點處的切線與直線l:y=3x﹣1平行,
則k=g′(x0)=2cos(x0)=3,
解得cos(x0)1,顯然不成立,
所以假設(shè)錯誤,即C錯誤;
方程g(x)=2,則2sin(x)=2,
∴sin(x),
∴x2kπ或x2kπ,k∈Z;
∴方程的兩個不同的解分別為x1,x2時,
|x1﹣x2|的最小值為,D正確.
故選:C.
科目:高中數(shù)學 來源: 題型:
【題目】已知在點處的切線與直線平行.
(Ⅰ)求實數(shù)的值;
(Ⅱ)設(shè).
(i)若函數(shù)在上恒成立,求的最大值;
(ii)當時,判斷函數(shù)有幾個零點,并給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐的底面為直角梯形,,,底面,且,,是的中點.
(1)證明:面面;
(2)求與夾角的余弦值;
(3)求面與面所成二面角余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從10種不同的作物種子中選出6種分別放入6個不同的瓶子中,每瓶不空,如果甲、乙兩種種子都不許放入第一號瓶子內(nèi),那么不同的放法共有( )
A.種B.種C.種D.種
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點,過直線左側(cè)的動點作于點的角平分線交軸于點,且,記動點的軌跡為曲線.
(1)求曲線的方程;
(2)過點作直線交曲線于兩點,點在上,且軸,試問:直線是否恒過定點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,直線 與拋物線交于,兩點.
(1)若以為直徑的圓與軸相切,求該圓的方程;
(2)若直線與軸負半軸相交,求(為坐標原點)面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知雙曲線:的左、右焦點分別為、,為坐標原點,是雙曲線在第一象限上的點,直線交雙曲線左支于點,直線 交雙曲線右支于點,若,且,則雙曲線的漸近線方程為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,直線的傾斜角為,且經(jīng)過點.以坐標原點O為極點,x軸正半軸為極軸建立極坐標系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.
(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標方程;
(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com