7.已知f(x)=x2+2ax+b2
(1)若a是從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù),求函數(shù)f(x)有零點(diǎn)的概率
(2)若a是從區(qū)間[0,3]中任取的一個(gè)數(shù),b是從區(qū)間[0,2]中任取的一個(gè)數(shù),求函數(shù)f(x)有零點(diǎn)的概率.

分析 (1)由一元二次方程的判別式大于等于0得到方程x2+2ax+b2=0有實(shí)數(shù)根的充要條件為a≥b,用列舉法求出a從0,1,2,3四個(gè)數(shù)中任取的一個(gè)數(shù),b從0,1,2三個(gè)數(shù)中任取的一個(gè)數(shù)的所有基本事件個(gè)數(shù),查出滿足a≥b的事件數(shù),然后直接利用古典概型概率計(jì)算公式求解;
(2)由題意求出點(diǎn)(a,b)所構(gòu)成的矩形面積,再由線性規(guī)劃知識(shí)求出滿足a≥b的區(qū)域面積,由測(cè)度比是面積比求概率.

解答 解:設(shè)事件A為“方程x2+2ax+b2=0有實(shí)數(shù)根”.
當(dāng)a≥0,b≥0時(shí),方程x2+2ax+b2=0有實(shí)數(shù)根的充要條件為a≥b.
(1)基本事件共12個(gè):(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一個(gè)數(shù)表示a的取值,第二個(gè)數(shù)表示b的取值.
事件A中包含9個(gè)基本事件.
事件A發(fā)生的概率為P(A)=$\frac{9}{12}$=$\frac{3}{4}$;
(2)試驗(yàn)的全部結(jié)果所構(gòu)成的區(qū)域?yàn)閧(a,b)|0≤a≤3,0≤b≤2}.
構(gòu)成事件A的區(qū)域?yàn)閧(a,b)|0≤a≤3,0≤b≤2,a≥b}.
如圖,
∴所求的概率P=$\frac{3×2-\frac{1}{2}×{2}^{2}}{3×2}$=$\frac{2}{3}$.

點(diǎn)評(píng) 本題考查了古典概型及其概率計(jì)算公式,考查了幾何概型的概率,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,∠A=60°,b=90,c=50,求a和∠B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知方程x2+(y-1)2=10,若點(diǎn)M($\frac{m}{2}$,-m)在此方程表示的曲線上,則實(shí)數(shù)m=( 。
A.2B.-$\frac{18}{5}$C.2或$\frac{18}{5}$D.2或-$\frac{18}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知△ABC的三個(gè)頂點(diǎn)A(-1,0),B(1,0),C(3,2),其外接圓H.
(1)求圓H的方程;
(2)若直線l過(guò)點(diǎn)C,且被圓H截得的弦長(zhǎng)為2,求直線l的方程.
(3)對(duì)于線段BH上的任意一旦P,若在以C為圓心的圓上都存在不同的兩點(diǎn)M,N,使得點(diǎn)M是線段PN的中點(diǎn),求圓C的半徑r的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)y=2cos2x+sin2x的遞增區(qū)間是[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)一元二次方程mx2+(2m-1)x+(m+1)=0的兩根為tanα,tanβ,求tan(α+β)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.設(shè)直線經(jīng)過(guò)兩點(diǎn)A(-2,2)與B(3,-1),求直線的點(diǎn)斜式、斜截式和一般式方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.在等差數(shù)列{an}中,a1=$\frac{1}{2016}$,am=$\frac{1}{n}$,an=$\frac{1}{m}$(m≠n),則a3=$\frac{1}{672}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.C${\;}_{33}^{1}$+C${\;}_{33}^{2}$+C${\;}_{33}^{3}$+…+C${\;}_{33}^{33}$除以9的余數(shù)是7.

查看答案和解析>>

同步練習(xí)冊(cè)答案