分析 數(shù)列{an}滿足a${\;}_{n+1}^{2}$=anan+2(an≠0),可得:$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n+2}}{{a}_{n+1}}$=q≠0,可得:數(shù)列{an}是等比數(shù)列.由0<a1<a6=1=${a}_{1}{q}^{5}$,可得q≠±1.a(chǎn)1a11=a2a10=…=a5a7=${a}_{6}^{2}$=1,n≥12時(shí),an=${a}_{6}{q}^{n-6}$≠1.因此a1-$\frac{1}{{a}_{1}}$+${a}_{11}-\frac{1}{{a}_{11}}$=a1-$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{1}}$-a1=0=…,即可得出.
解答 解:∵數(shù)列{an}滿足a${\;}_{n+1}^{2}$=anan+2(an≠0),
∴$\frac{{a}_{n+1}}{{a}_{n}}$=$\frac{{a}_{n+2}}{{a}_{n+1}}$=q≠0,
∴數(shù)列{an}是等比數(shù)列.
∵0<a1<a6=1=${a}_{1}{q}^{5}$,∴q≠±1.
∴a1a11=a2a10=…=a5a7=${a}_{6}^{2}$=1,
n≥12時(shí),an=${a}_{6}{q}^{n-6}$≠1.
∴a1-$\frac{1}{{a}_{1}}$+${a}_{11}-\frac{1}{{a}_{11}}$=a1-$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{1}}$-a1=0,
…,
則使不等式a1-$\frac{1}{{a}_{1}}$+a2-$\frac{1}{{a}_{2}}$+…+an-$\frac{1}{{a}_{n}}$≤0恒成立的n的最大值是11.
故答案為:11.
點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其性質(zhì)、不等式的性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{5}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 12 | B. | -12 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125] |
頻數(shù) | 6 | 26 | x | 22 | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com