8.若向量$\overrightarrow{a}$=(2,4)與向量$\overrightarrow$=(x,6)垂直,則實數(shù)x=(  )
A.12B.-12C.3D.-3

分析 由向量$\overrightarrow{a}$與$\overrightarrow$垂直便可得到$\overrightarrow{a}•\overrightarrow=0$,進行向量數(shù)量積的坐標(biāo)運算便可得出關(guān)于x的方程,解出x即可.

解答 解:∵$\overrightarrow{a}⊥\overrightarrow$;
∴$\overrightarrow{a}•\overrightarrow=0$;
即2x+24=0;
∴x=-12.
故選:B.

點評 考查向量垂直的充要條件,以及向量數(shù)量積的坐標(biāo)運算.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.函數(shù)$f(x)=2sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的圖象如圖所示,則ω=2,φ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.計算:${C}_{3}^{3}$+${C}_{4}^{3}$+…+${C}_{10}^{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,四棱錐P-ABCD中,側(cè)面PAD是邊長為2的正三角形,且與底面ABCD垂直,底面ABCD是∠ABC=60°的菱形,M為AD的中點.
(1)求證:平面PCM⊥平面PAD;
(2)求三棱錐D-PAC的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知數(shù)列{an}的前n項和Sn=kn2+bn(k≠0),a1,a3,a4成等比數(shù)列,則滿足18an=7Sn的n值為12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知數(shù)列{an}滿足a${\;}_{n+1}^{2}$=anan+2(an≠0),0<a1<a6=1,則使不等式a1-$\frac{1}{{a}_{1}}$+a2-$\frac{1}{{a}_{2}}$+…+an-$\frac{1}{{a}_{n}}$≤0恒成立的n的最大值是11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.軸截面為等腰直角三角形的圓錐,側(cè)面積與底面積之比為( 。
A.3:1B.$\sqrt{3}$:1C.2:1D.$\sqrt{2}$:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=3sin(x+$\frac{π}{3}$+θ)是偶函數(shù).且0<θ<π.則θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知sinαcosβ=$\frac{1}{4}$,則cosαsinβ的取值范圍[-$\frac{3}{4}$,$\frac{3}{4}$].

查看答案和解析>>

同步練習(xí)冊答案