分析 (Ⅰ)由不等式f(x)=|2x-6|≤x,可得$\left\{\begin{array}{l}{x>0}\\{-x≤2x-6≤x}\end{array}\right.$,由此求得x的范圍.
(Ⅱ)由題意可得 $\frac{a}{2}$≥|x-3|-|x-1|,利用絕對(duì)值的意義求得|x-3|-|x-1|的最小值,可得a的范圍.
解答 解:(Ⅰ)由不等式f(x)=|2x-6|≤x,可得$\left\{\begin{array}{l}{x>0}\\{-x≤2x-6≤x}\end{array}\right.$
求得2≤x≤6,故不等式的解集為{x|2≤x≤6}.
(Ⅱ)若存在x使不等式f(x)-2|x-1|≤a成立,即a≥|2x-6|-2|x-1|,
即$\frac{a}{2}$≥|x-3|-|x-1|.
而|x-3|-|x-1|表示數(shù)軸上的x對(duì)應(yīng)點(diǎn)到3對(duì)應(yīng)點(diǎn)的距離減去它到1對(duì)應(yīng)點(diǎn)的距離,
它的最小值為-2,∴$\frac{a}{2}$≥-2,即 a≥-4,故實(shí)數(shù)a的取值范圍為[-4,+∞).
點(diǎn)評(píng) 本題主要考查絕對(duì)值不等式的解法,絕對(duì)值的意義,函數(shù)的能成立問(wèn)題,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
態(tài)度 調(diào)查人群 | 應(yīng)該取消 | 應(yīng)該保留 | 無(wú)所謂 |
在校學(xué)生 | 2100人 | 120人 | y人 |
社會(huì)人士 | 500人 | x人 | z人 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com