分析 由已知得x2+y2-6y=(2x+6)n,從而$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-6y=0}\\{2x+6=0}\end{array}\right.$,由此能求出定點的坐標(biāo).
解答 解:x2+y2+2nx-6y+6n=0,
∴x2+y2-6y=(2x+6)n,
∴$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}-6y=0}\\{2x+6=0}\end{array}\right.$,
解得x=-3,y=3,
∴定點的坐標(biāo)是(-3,3).
故答案為(-3,3).
點評 本題考查動圓經(jīng)過的定點坐標(biāo)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意圓的性質(zhì)的合理運用.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3020+$\sqrt{3}$ | B. | 3020+$\frac{\sqrt{3}-1}{2}$ | C. | $\sqrt{3}$+3018 | D. | 3018+$\frac{\sqrt{3}-1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ( 0,1) | B. | ( 1,2) | C. | ( 2,4) | D. | (4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ρ=2acosθ(a>0) | B. | ρ=9(cosθ+sinθ) | C. | ρ=3 | D. | 2ρcosθ+3ρsinθ=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 3 | D. | -3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com