4.已知復(fù)數(shù)z滿足zi+5i=2z(i為虛數(shù)單位),則復(fù)數(shù)z的實(shí)部是-1.

分析 利用復(fù)數(shù)的運(yùn)算法則、實(shí)部的定義即可得出.

解答 解:∵zi+5i=2z,∴z=$\frac{5i}{2-i}$=$\frac{5i(2+i)}{(2-i)(2+i)}$=2i-1.
其實(shí)部為-1.
故答案為:-1.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、實(shí)部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=$\frac{3}{2}({{a_n}-1})$.
(1)求證數(shù)列{an}是等比數(shù)列并求通項(xiàng)公式an;
(2)設(shè)bn=2n-1,cn=an•bn,Tn為{cn}的前n項(xiàng)和,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.某三棱錐的三視圖如圖,該三棱錐的表面積是( 。
A.2B.$\sqrt{2}$+1C.$\sqrt{2}+\sqrt{3}$+3D.$\sqrt{3}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知tanα=2,其中α是第三象限的角,則sin(π+α)等于( 。
A.-$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{5}}}{5}$C.-$\frac{{2\sqrt{5}}}{5}$D.$\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.若直線m∥平面α,直線n在平面α內(nèi),則直線m與直線n的位置關(guān)系為相交或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知函數(shù)$f(x)=\frac{{{x^3}+{x^2}+2x+1}}{{{x^2}+1}}$,x∈[-2015,2015]的最大值與最小值分別為A和B,則A+B=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.空間四邊形ABCD中,AC⊥BD,且AC=BD,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),則四邊形EFGH為(  )
A.平行四邊形B.矩形C.正方形D.菱形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.將函數(shù)f(x)=2sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{12}$個(gè)單位,再將所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,得到函數(shù)y=g(x)的圖象,則函數(shù)y=g(x)的圖象與直線x=0,x=2π,x軸圍成的圖形面積為( 。
A.0B.4C.8D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.對(duì)于非零向量$\overrightarrow a$,$\overrightarrow b$,$\overrightarrow c$,則( 。
A.($\overrightarrow a$•$\overrightarrow b$)•$\overrightarrow c$=$\overrightarrow a$•($\overrightarrow b$•$\overrightarrow c$)B.若$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow a$•$\overrightarrow c$,則$\overrightarrow b$=$\overrightarrow c$
C.|$\overrightarrow a$•$\overrightarrow b$|=|$\overrightarrow a$|•|$\overrightarrow b$|D.若$|\overrightarrow a$+$\overrightarrow b$|=|$\overrightarrow a$-$\overrightarrow b$|,則$\overrightarrow a$•$\overrightarrow b$=0

查看答案和解析>>

同步練習(xí)冊(cè)答案