11.如圖,已知:點E、F分別是正方形ABCD的邊AB、BC的中點,BD、DF分別交CE于點G、H,若正方形ABCD的面積是240,則四邊形BFHG的面積等于( 。
A.26B.28C.24D.30

分析 要求四邊形為不規(guī)則四邊形,要求面積可通過其他圖形的關系求解,SBFHG=S△CEB-S△BEG-S△CFH

解答 解:由題意得正方形的邊長為4$\sqrt{15}$,
∴BD=4$\sqrt{30}$
∵$\frac{BE}{DC}$=$\frac{BG}{GD}$=$\frac{1}{2}$
∴BG=$\frac{4\sqrt{30}}{3}$
∴S△BEG=$\frac{1}{2}$BE×BGsin∠EBG=20
∵△CFH∽△CEB
∴$\frac{{S}_{△CFH}}{{S}_{△CEB}}$=$\frac{1}{5}$,
∴S△CFH=12,
∴SBFHC=S△CEB-S△BEG-S△CFH=28.
故選B.

點評 本題求的是不規(guī)則四邊形的面積,直接求解可能比較麻煩,可通過間接法求解.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.下列函數(shù)中,是奇函數(shù)且在其定義域內為單調函數(shù)的是( 。
A.y=$\frac{-1}{x}$B.y=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$C.y=ex+e-xD.y=-x|x|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.P(3cosθ,sinθ)是銳角α終邊上一點,其中0<θ<$\frac{π}{2}$.記y=θ-α,則 y的最大值是( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.現(xiàn)有三個實數(shù)的集合,既可表示為{a,$\frac{a}$,1},也可表示為{a2,a+b,0},則a2016+b2016=1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)f(x)=x4lnx-a(x4-1),a∈R.
(1)求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)若當x≥1時,f(x)≥0恒成立,求實數(shù)a的取值范圍;
(3)f(x)的極小值為φ(a),當a>0時,求證:$\frac{1}{4}({{e^{1-\frac{1}{4a}}}-{e^{4a-1}}})≤φ(a)<0$.(e=2.71828…為自然對數(shù)的底)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.如圖,將△ABC沿著它的中位線DE折疊后,點A落到點A′,若∠C=120°,∠A=26°,則∠A′DB的度數(shù)是112°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.在體積為$\frac{{\sqrt{3}}}{2}$的四面體ABCD中,AB⊥平面BCD,AB=1,BC=2,BD=3,則CD長度的所有值為$\sqrt{7},\sqrt{19}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.(1)求函數(shù)f(x)=ln(1+x)-x的最大值;
(2)求證:$\frac{{2x{e^x}}}{x+2}$>$\frac{{{e^x}ln(1+x)}}{x}$-1在x>0上恒成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.如圖,△ABC中,邊AC上一點F分AC為$\frac{AF}{FC}$=$\frac{2}{3}$,BF上一點G分BF為$\frac{BG}{GF}$=$\frac{3}{2}$,AG的延長線與BC交于點E,則BE:EC=3:5.

查看答案和解析>>

同步練習冊答案