19.已知集合A={x|-1<x≤0},B={a},A∩B=B,則實(shí)數(shù)a的取值范圍是(  )
A.[0,1)B.(-1,1)C.(-1,0]D.(-1,0)

分析 利用A∩B=B,可得B⊆A,利用集合A={x|-1<x≤0},B={a},從而解得實(shí)數(shù)a的取值范圍.

解答 解:∵A∩B=B,
∴B⊆A,
∵集合A={x|-1<x≤0},B={a},
∴-1<a≤0,
故選C.

點(diǎn)評(píng) 本題考查了集合的運(yùn)算,同時(shí)考查了集合包含關(guān)系的應(yīng)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)全集為R,集合A={x|-3<x<3},B={x|-1<x≤5},則A∩(∁UB)=( 。
A.(-3,-1]B.(-3,-1)C.(-3,0)D.(-3,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,在四棱錐P-ABCD中,底面ABCD是菱形,側(cè)棱PD⊥底面ABCD,E,F(xiàn),M分別是PC,PB,CD的中點(diǎn).
(1)證明:PB⊥AC;
(2)證明:平面PAD∥平面MEF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若直線y=kx+1(k>0)是曲線$y=\sqrt{x}$的切線,則k=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.如圖是一個(gè)算法的流程圖,則輸出S的值是31.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}|{{{log}_2}x}|,0<x<2\\ sin({\frac{π}{4}x}),2≤x≤10\end{array}\right.$,若存在實(shí)數(shù)x1,x2,x3,x4,滿足x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),則$\frac{{({{x_3}-1})({{x_4}-1})}}{{{x_1}{x_2}}}$的取值范圍是(9,21).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.設(shè)x,y,滿足約束條件$\left\{\begin{array}{l}{3x-y-2≤0}\\{x-y≥0}\\{x≥0,y≥0}\end{array}\right.$,若目標(biāo)函數(shù)z=ax+by(a>1,b>2)的最大值為5,則$\frac{1}{a-1}+\frac{4}{b-2}$的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.在△ABC中,已知A-C=$\frac{π}{2}$,cosB=$\frac{2\sqrt{2}}{3}$.
(1)求sinC的值;
(2)若AC=1,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知y=g(x)的圖象是由y=coswx(w>0)的圖象向左平移$\frac{π}{3}$個(gè)單位得到,g′(x)是g(x)的導(dǎo)函數(shù),且${g^'}({\frac{π}{6}})=0$,則w的最小值是( 。
A.2B.3C.4D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案