20.直線2x-y-1=0被圓(x-3)2+y2=9所截得的弦長為4.

分析 求出圓心到直線2x-y-1=0的距離,再利用勾股定理,即可求得弦長.

解答 解:圓(x-3)2+y2=9的圓心到直線2x-y-1=0的距離為$\frac{5}{\sqrt{5}}$=$\sqrt{5}$,
∴直線2x-y-1=0被圓(x-3)2+y2=9所截得的弦長為2$\sqrt{9-5}$=4.
故答案為:4

點評 本題考查直線與圓的位置關(guān)系,考查點到直線的距離公式,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.寫出下列圖形的極坐標方程,且畫出圖象(已知點為極坐標):
(1)過點(10,$\frac{π}{4}$)且平行于極軸的直線;
(2)過點(10,$\frac{π}{4}$)且垂直于極軸的直線;
(3)過點(1,0)和極軸夾角$\frac{π}{6}$的直線;
(4)圓心在(1,π)、半徑為1的圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=$\frac{1}{2}$loga(ax)•loga(a2x)(x∈[2,8],a>0,且a≠1)的最大值是1,最小值是-$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.平面直角坐標系中,點P、Q是方程$\sqrt{{x^2}+2\sqrt{7}x+{y^2}+7}+\sqrt{{x^2}-2\sqrt{7}x+{y^2}+7}$=8表示的曲線C上不同兩點,且以PQ為直徑的圓過坐標原點O,則O到直線PQ的距離為( 。
A.2B.$\frac{6}{5}$C.3D.$\frac{12}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.函數(shù)y=$\sqrt{x+1}$+$\sqrt{1-x}$的最大值是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC的三個頂點坐標分別為A(-1,0),B(2,3),C(1,2$\sqrt{2}$),且定點P(1,1).
(1)求△ABC的外接圓的標準方程;
(2)若過定點P的直線與△ABC的外接圓交于E,F(xiàn)兩點,求弦EF中點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.比較下列各題中兩個數(shù)學(xué)式值的大小
(1)1.7a+1,1.7a;(2)0.9a-1,0.9a;
(3)log0.9(a2+1),log0.9a2;(4)log1.2a2,log1.2(a2-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=lg(x2+2x+a2)的值域為R,則實數(shù)a的取值范圍是[-1,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在直角坐標系xOy中,半圓C的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+cosφ}\\{y=sinφ}\end{array}}\right.$(φ為參數(shù),0≤φ≤π),以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求C的極坐標方程;
(Ⅱ)直線l的極坐標方程是$ρ(sinθ+\sqrt{3}cosθ)=5\sqrt{3}$,射線OM:θ=$\frac{π}{3}$與半圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

同步練習(xí)冊答案