12.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間(-∞,0]上是減函數(shù),判斷f(x)在(-∞,+∞)上的單調(diào)性,并證明你的判斷.

分析 利用作差法.我們可以任取區(qū)間上滿足x1<x2的兩個實(shí)數(shù),再根據(jù)函數(shù)f(x)是奇函數(shù),且在(-∞,0]上是減函數(shù),易判斷函數(shù)f(x)在(0,+∞)上的單調(diào)性,即可判斷f(x)在(-∞,+∞)上的單調(diào)性

解答 解:任取x1,x2∈(0,+∞),且x1<x2
則-x2<-x1<0
又∵f(x)在(-∞,0]上是減函數(shù),
∴f(-x2)>f(-x1
又∵f(x)是奇函數(shù),
∴f(-x2)=-f(x2),f(-x1)=-f(x1
∴f(x2)<f(x1),即f(x)在(0,+∞)上單調(diào)遞減.
∴f(x)在(-∞,+∞)上單調(diào)遞減.

點(diǎn)評 本題考查了函數(shù)單調(diào)性和奇偶性的性質(zhì),考查函數(shù)單調(diào)性的判斷與證明,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知命題p:?x∈(0,$\frac{π}{2}$),sinx<tanx,則( 。
A.p是真命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0>tanx0
B.p是真命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0<tanx0
C.p是假命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0<tanx0
D.p是真命題:¬p:?x0∈(0,$\frac{π}{2}$),sinx0≥tanx0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在數(shù)列{an}中,a1=1,an+2+(-1)nan=1,則數(shù)列{an}的前100項(xiàng)之和為1300.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.設(shè)不恒為0的函數(shù)f(x)和g(x)分別是R上偶函數(shù)和奇函數(shù),則下列結(jié)論:①|(zhì)f(x)|-g(x)是奇函數(shù);②|f(x)|+g(x)是偶函數(shù);③f(x)-|g(x)|是奇函數(shù);④f(x)+|g(x)|是偶函數(shù),其中恒成立的是④(填序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知x<$\frac{5}{4}$,求y=4x-2+$\frac{1}{4x-5}$的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知$\overrightarrow{a}$=(-1,2+$\sqrt{3}$),$\overrightarrow$=(1,1),求$\overrightarrow{a}$$•\overrightarrow$,|$\overrightarrow{a}$|•|$\overrightarrow$|,$\overrightarrow{a}$與$\overrightarrow$的夾角θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若函數(shù)f(x)=$\frac{1}{1-x}$,則f[$\frac{1}{f(x)}$]=$\frac{1}{x}$;若x∈[2,4],則f[$\frac{1}{f(x)}$]的值域?yàn)?[\frac{1}{4},\frac{1}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.求下列函數(shù)的值域:
(1)y=$\sqrt{x}$-1;(2)y=$\frac{5x-1}{4x+2}$;(3)y=5-x+$\sqrt{3x-1}$;(4)y=$\frac{3x}{{x}^{2}+4}$;(5)y=|x+1|+|x-2|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知圓C:x2+y2-2x+4y=0關(guān)于直線3x-ay-11=0對稱,則圓C中以($\frac{a}{4}$,-$\frac{a}{4}$)為中點(diǎn)的弦長為( 。
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案