20.設(shè)不恒為0的函數(shù)f(x)和g(x)分別是R上偶函數(shù)和奇函數(shù),則下列結(jié)論:①|(zhì)f(x)|-g(x)是奇函數(shù);②|f(x)|+g(x)是偶函數(shù);③f(x)-|g(x)|是奇函數(shù);④f(x)+|g(x)|是偶函數(shù),其中恒成立的是④(填序號(hào))

分析 由設(shè)函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),我們易得到|f(x)|、|g(x)|也為偶函數(shù),進(jìn)而根據(jù)奇+奇=奇,偶+偶=偶,逐一對(duì)四個(gè)結(jié)論進(jìn)行判斷,即可得到答案.

解答 解:∵函數(shù)f(x)和g(x)分別是R上的偶函數(shù)和奇函數(shù),
則|g(x)|也為偶函數(shù),
則f(x)-|g(x)|是偶函數(shù),f(x)+|g(x)|是偶函數(shù),|f(x)|+g(x)與|f(x)|-g(x)的奇偶性均不能確定
故答案為:④.

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)奇偶性的判斷,其中根據(jù)已知確定|f(x)|、|g(x)|也為偶函數(shù),是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若函數(shù)f(x)=2${\;}^{{x}^{2}}$-ax+1+2a滿(mǎn)足f(-x)=f(x)對(duì)一切x∈R恒成立,則f(0)=( 。
A.8B.4C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知數(shù)列{an} 滿(mǎn)足a1=2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$(n∈N*),則a1a2a3…a2010 的值為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知集合A={x|2x≤4,x∈R},B={x|$\sqrt{x}$≤2,x∈Z},則A∩B=( 。
A.(0,2)B.[0,2]C.{0,1,2}D.{0,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.在△ABC中,若∠A:∠B=1:2,a:b=1:$\sqrt{3}$,則∠B為( 。
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知f(x)是定義在實(shí)數(shù)集R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=ln(x+1)+x2
(1)當(dāng)x<0時(shí),求f(x)的解析式;
(2)若f(m-1)>f(3-m),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)函數(shù)f(x)是定義在R上的奇函數(shù),且在區(qū)間(-∞,0]上是減函數(shù),判斷f(x)在(-∞,+∞)上的單調(diào)性,并證明你的判斷.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.函數(shù)f(x)=1n(x2-2x-3)的單調(diào)增區(qū)間記為集合A,關(guān)于原點(diǎn)對(duì)稱(chēng)的區(qū)間[a-5,a2-5a]記為集合B,求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)正實(shí)數(shù)x,y,z滿(mǎn)足x2-3xy+4y2-z=0,則當(dāng)$\frac{xy}{z}$取得最大值時(shí),$\frac{2}{x}+\frac{1}{y}-\frac{2}{z}+2$的最大值為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案