已知雙曲線C:
y2
a2
-
x2
b2
=1(a>0,b>0)的離心率為
5
2
,則C的漸近線方程為( 。
A、y=±2x
B、y=±
1
2
x
C、y=±4x
D、y=±
1
4
x
考點:雙曲線的簡單性質(zhì)
專題:計算題,圓錐曲線的定義、性質(zhì)與方程
分析:運用離心率公式,令c=
5
t,a=2t,則b=
c2-a2
=t,再由漸近線方程,即可得到結(jié)論.
解答: 解:雙曲線的離心率為
5
2
,
c
a
=
5
2
,令c=
5
t,a=2t,則b=
c2-a2
=t,
則雙曲線的漸近線方程為y=±
a
b
x,
即為y=±2x,
故選A.
點評:本題考查雙曲線的方程和性質(zhì),考查離心率公式和漸近線方程,考查運算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

求y=x2在x=x0附近的平均變化率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一條直線與兩條平行線相交,求證:這三條直線在同一平面內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機變量ξ服從正態(tài)分布N(2,22),且P(ξ<1)=0.1,則P(1<ξ<3)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求證:如果兩條直線同時垂直于一個平面,那么這兩條直線平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,M,N分別是CC1,B1C1的中點,則過A1,M,N三點的平面截正方體所得的截面形狀是( 。
A、平行四邊形B、直角梯形
C、等腰梯形D、三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓錐曲線C的兩個焦點分別為F1,F(xiàn)2,若曲線C上存在點P滿足|PF1|:|F1F2|:|PF2|=4:3:2,則曲線C的離心率等于( 。
A、
1
2
3
2
B、
1
2
2
3
C、
1
2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線的方程為
x2
a2
-
y2
b2
=1,它的漸近線過橢圓
x2
4
+
y2
16
=1和橢圓
ax2
16
+
y2
4
=1(0<a≤1)的交點,則雙曲線的離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:關(guān)于x的不等式ax>1(a>0,a≠1)的解集為(-∞,0);命題q:函數(shù)f(x)=ln(ax2-x+2)的定義域是R.如果命題“p∨q”為真命題,“p∧q”為假命題,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案