分析 (1)設(shè)動點(diǎn)M(x,y)為軌跡上任意一點(diǎn),則$\sqrt{{{(x-2)}^2}+{y^2}}=\frac{1}{2}\sqrt{{{(x-8)}^2}+{y^2}}$,即可求出動點(diǎn)M的軌跡方程;
(2)設(shè)所求直線方程為x+y=a,利用圓心到直線的距離,即可求出直線方程.
解答 解:(1)設(shè)動點(diǎn)M(x,y)為軌跡上任意一點(diǎn),則$\sqrt{{{(x-2)}^2}+{y^2}}=\frac{1}{2}\sqrt{{{(x-8)}^2}+{y^2}}$,
得 x2+y2=16
動點(diǎn)M的軌跡方程為x2+y2=16.
(2)設(shè)所求直線方程為x+y=a,
則圓心到直線的距離$d=\frac{|a|}{{\sqrt{{1^2}+{1^2}}}}=4$
解得$a=±4\sqrt{2}$
故所求直線方程為$x+y±4\sqrt{2}=0$
點(diǎn)評 本題考查軌跡方程,考查直線與圓的位置關(guān)系,考查學(xué)生分析解決問題的能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
公務(wù)車 | 私家車 | |
單號(輛) | 10 | 135 |
雙號(輛) | 20 | 120 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | 31 | C. | 30 | D. | 以上都不對 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 3+2$\sqrt{2}$ | C. | 3+$\sqrt{2}$ | D. | 2+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com