10.在三棱錐P-ABC中,平面PAC⊥平面ABC,△PAC為等腰直角三角形,PA⊥PC,AC⊥BC,BC=2AC=4,M為AB的中點(diǎn).
(Ⅰ)求證:AC⊥PM;
(Ⅱ)求PC與平面PAB所成角的正弦值;
(Ⅲ)在線段PB上是否存在點(diǎn)N使得平面CNM⊥平面PAB?若存在,求出$\frac{PN}{PB}$的值,若不存在,說明理由.

分析 (I)取AC中點(diǎn)O,連接OP,OM,可證AC⊥平面POM,故而AC⊥PM;
(II)以O(shè)為原點(diǎn)建立坐標(biāo)系,求出$\overrightarrow{PC}$與平面PAB的法向量$\overrightarrow{n}$的坐標(biāo),于是PC與平面PAB所成角的正弦值為|cos<$\overrightarrow{PC},\overrightarrow{n}$>|;
(III)設(shè)$\overrightarrow{PN}=λ\overrightarrow{PB}$,用λ表示出$\overrightarrow{CN}$的坐標(biāo),求出$\overrightarrow{CM}$,求出平面CNM的法向量$\overrightarrow{m}$,令$\overrightarrow{m}•\overrightarrow{n}$=0得出λ.

解答 證明:(I)取AC中點(diǎn)O,連接OP,OM.
∵PA=PC,∴PO⊥AC,
∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,
∴PO⊥平面ABC.
∵M(jìn)是AB的中點(diǎn),∴OM∥BC,
∵BC⊥AC,
∴OM⊥AC.又OP∩OM=O,
∴AC⊥平面POM,∵PM?平面POM,
∴AC⊥PM.
(II)以O(shè)為原點(diǎn),以O(shè)A,OM,OP為坐標(biāo)軸建立空間直角坐標(biāo)系,如圖所示:
則A(1,0,0),C(-1,0,0),P(0,0,1),B(-1,4,0).
∴$\overrightarrow{PC}$=(-1,0,-1),$\overrightarrow{AP}$=(-1,0,1),$\overrightarrow{AB}$=(-2,4,0).
設(shè)平面PAB的法向量為$\overrightarrow{n}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{AP}=0}\\{\overrightarrow{n}•\overrightarrow{AB}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-x+z=0}\\{-2x+4y=0}\end{array}\right.$,令y=1得$\overrightarrow{n}$=(2,1,2),∴cos<$\overrightarrow{n},\overrightarrow{PC}$>=$\frac{\overrightarrow{n}•\overrightarrow{PC}}{|\overrightarrow{n}||\overrightarrow{PC}|}$=-$\frac{2\sqrt{2}}{3}$.
∴PC與平面PAB所成角的正弦值為$\frac{2\sqrt{2}}{3}$.
(III)∵M(jìn)(0,2,0),∴$\overrightarrow{PB}$=(-1,4,-1),$\overrightarrow{CP}$=(1,0,1),$\overrightarrow{CM}$=(1,2,0).
設(shè)線段PB上存在點(diǎn)N使得平面CNM⊥平面PAB.
設(shè)$\overrightarrow{PN}=λ\overrightarrow{PB}$=(-λ,4λ,-λ),(0≤λ≤1).則$\overrightarrow{CN}$=$\overrightarrow{CP}+\overrightarrow{PN}$=(1-λ,4λ,1-λ).
設(shè)平面CNM的法向量為$\overrightarrow{m}$=(x,y,z),則$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{CM}=0}\\{\overrightarrow{m}•\overrightarrow{CN}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x+2y=0}\\{(1-λ)x+4λy+(1-λ)z=0}\end{array}\right.$,設(shè)y=1得$\overrightarrow{m}$=(-2,1,$\frac{2-6λ}{1-λ}$).
∵平面CNM⊥平面PAB,∴$\overrightarrow{m}•\overrightarrow{n}=0$.
即-4+1+$\frac{4-12λ}{1-λ}$=0,解得$λ=\frac{1}{9}$.
∴線段PB上存在點(diǎn)N使得平面CNM⊥平面PAB,$\frac{PN}{PB}$=$\frac{1}{9}$.

點(diǎn)評 本題考查了線面垂直的判定與性質(zhì),線面角的計(jì)算,面面垂直的判定,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知過球面上有三點(diǎn)A,B,C的截面到球心的距離是球半徑的一半,且AB=BC=CA=2,則此球的半徑是( 。
A.$\frac{3}{4}$B.1C.$\frac{4}{3}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進(jìn)行調(diào)查,隨機(jī)調(diào)查了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如表:
年齡[5,15)[15,25)[25,35)[35,45)[45,55)[55,65)
頻數(shù)510151055
支持“生育二胎”4512821
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填下面2乘2列聯(lián)表,并問是否有的99%把握認(rèn)為以45歲為分界點(diǎn)對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在[5,15)的被調(diào)查人中各隨機(jī)選取兩人進(jìn)行調(diào)查,恰好兩人都支持“生育二胎放開”的概率是多少?
年齡不低于45歲的人數(shù)年齡低于45歲的人數(shù)合計(jì)
支持a=c=
不支持b=d=
合計(jì)
參考數(shù)據(jù):
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知直線3x+4y+c=0與圓心為C的圓x2+(y-1)2=2相交于A,B兩點(diǎn),且△ABC為直角三角形,則實(shí)數(shù)c等于1或-9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.三棱錐S-ABC中,側(cè)棱SA⊥平面ABC,底面ABC是邊長為$\sqrt{3}$的正三角形,SA=2$\sqrt{3}$,則該三棱錐的外接球體積等于$\frac{32}{3}$π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.直線y=kx+3被圓(x-2)2+(y-3)2=4截得的弦長為$2\sqrt{3}$,則k=( 。
A.±$\frac{\sqrt{3}}{3}$B.±$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知角x始邊與x軸的非負(fù)半軸重合,與圓x2+y2=4相交于點(diǎn)A,終邊與圓x2+y2=4相交于點(diǎn)B,點(diǎn)B在x軸上的射影為C,△ABC的面積為S(x),函數(shù)y=S(x)的圖象大致是( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.一塊邊長為8cm的正方形鐵板按如圖所示的陰影部分裁下,然后用余下的四個全等的等腰三角形加工成一個正四棱錐(底面是正方形,從頂點(diǎn)向底面作垂線,垂足為底面中心的四棱錐)形容器,O為底面ABCD的中心,則側(cè)棱SC與底面ABCD所成角的余弦值為( 。
A.$\frac{{2\sqrt{3}}}{5}$B.$\frac{{3\sqrt{2}}}{5}$C.$\frac{4}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在直三棱柱ABC-A1B1C1中,BC=4,∠BAC=90°,AA1=2,則此三棱柱外接球的表面積為20π.

查看答案和解析>>

同步練習(xí)冊答案