13.如圖,在直三棱柱ABC-A1B1C1中,D,E分別為BB1和CC1的中點(diǎn),AF⊥平面A1DE,其垂足F落在直線A1D上.
(1)求證:BC⊥A1D; 
(2)若A1D=$\sqrt{13}$,AB=BC=3,G為AC的中點(diǎn),求三棱錐G-A1DB1的體積.

分析 (1)利用線面垂直的判定定理,證明BC⊥平面AA1B1B,即可證明BC⊥A1D; 
(2)利用三棱錐的體積公式,即可求三棱錐G-A1DB1的體積.

解答 (1)證明:∵在直三棱柱ABC-A1B1C1中,AA1⊥平面ABC,
又∵BC?平面ABC,∴AA1⊥BC.…(1分)
又∵AF⊥平面A1DE,DE?平面ADE,∴AF⊥DE.…(3分)
又∵D,E分別為BB1和CC1的中點(diǎn),∴DE∥BC,∴AF⊥BC.…(4分)
而AA1∩AF=A,
∴BC⊥平面AA1B1B.
又∵A1D?平面AA1B1B,∴BC⊥A1D. …(6分)
(2)解:∵AB=BC=3,∴A1B1=B1C1=DE=3,
則由Rt△A1B1D≌Rt△C1DE,知C1D=$\sqrt{13}$,
∴C1E=$\sqrt{{C}_{1}{D}^{2}-D{E}^{2}}$=2,則B1D=2.…(8分)
由(1)知BC⊥平面AA1B1B,則由G為AC的中點(diǎn),知G到平面AA1B1B的距離為C到平面AA1B1B的距離的$\frac{1}{2}$,
即為$\frac{1}{2}BC$=$\frac{3}{2}$,…(10分)
∴${V}_{G-{A}_{1}D{E}_{1}}$=$\frac{1}{3}×\frac{1}{2}×3×2×\frac{3}{2}$=$\frac{3}{2}$.…(12分)

點(diǎn)評(píng) 本題考查了直線與平面垂直的判定與性質(zhì),考查棱錐的體積,考查了學(xué)生的空間想象能力和思維能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知雙曲線$\frac{{y}^{2}}{5}$-$\frac{{x}^{2}}{m}$=1的一個(gè)焦點(diǎn)與拋物線x2=12y的焦點(diǎn)相同,則此雙曲線的漸近線方程為( 。
A.y=±$\frac{\sqrt{5}}{5}$xB.y=±$\frac{2\sqrt{5}}{5}$xC.y=$±\frac{\sqrt{5}}{2}$xD.y=$±\sqrt{5}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知雙曲線$\frac{x^2}{a^2}-\frac{y^2}{2}=1(a>0)$與拋物線y2=8x的焦點(diǎn)重合,直線y=x+1與該雙曲線的交點(diǎn)個(gè)數(shù)是( 。
A.0B.1C.2D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知等腰三角形頂角的余弦值等于$\frac{4}{5}$,則這個(gè)三角形底角的正弦值為$\frac{3\sqrt{10}}{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.某地決定在一個(gè)大型廣場(chǎng)建一個(gè)同心圓形花壇,花壇分為兩部分,中間小圓部分種植草坪,周圍的圓環(huán)分為n(n≥3,n∈N)等份種植紅、黃、藍(lán)三色不同的花.要求相鄰兩部分種植不同顏色的花.如圖①,圓環(huán)分成的3等份分別為a1,a2,a3,有6種不同的種植方法.如圖②,圓環(huán)分成的4等份分別為 a1,a2,a3,a4,有18種不同的種植方法;則在圖③中,圓環(huán)分成的5等份分別為a1,a2,a3,a4,a5,有30種不同的種植方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知一個(gè)凸多邊形的平面展開(kāi)圖由兩個(gè)正六邊形和六個(gè)正方形構(gòu)成,如圖所示,若該凸多面體所有棱長(zhǎng)均為1,則其體積V=$\frac{3\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,c=2$\sqrt{3}$,asinA-csinC=(a-b)sinB.
(1)若c+bcosA=a(4cosA+cosB),求△ABC的面積;
(2)求AB邊上的中線CD的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.如圖所示的幾何體是由正四棱錐和圓柱組合而成,且該幾何體內(nèi)接于球(正四棱錐的頂點(diǎn)都在球面上),正四棱錐底面邊長(zhǎng)為2,體積為$\frac{4}{3}$,則圓柱的體積為2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}滿足a1=1,an+1=2an+3n+1
(1)求證{an-3n+1}是等比數(shù)列;
(2)求an;
(3)如果改成an+1=2an+3•2n-1之后呢?

查看答案和解析>>

同步練習(xí)冊(cè)答案