【題目】已知函數(shù)(),其中為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)已知, 為整數(shù),若對(duì)任意,都有恒成立,求的最大值.
【答案】(1)見(jiàn)解析(2)2
【解析】試題分析:(1)先求導(dǎo)數(shù),再根據(jù)m范圍確定導(dǎo)函數(shù)零點(diǎn),根據(jù)導(dǎo)函數(shù)符號(hào)確定單調(diào)性,(2)先分離得,再利用導(dǎo)數(shù)研究函數(shù)單調(diào)性(隱零點(diǎn)),根據(jù)單調(diào)性求最小值,根據(jù)極值條件化簡(jiǎn)最小值,最后根據(jù)最小值范圍確定k范圍,進(jìn)而確定的最大值.
試題解析:解:(1)由題意得,函數(shù)的定義域?yàn)?/span>, .
若,則,所以函數(shù)在區(qū)間上單調(diào)遞減;
若,則當(dāng)時(shí), ,當(dāng)時(shí), ,
所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減.
(2)當(dāng)時(shí),對(duì)任意,都與恒成立,等價(jià)于對(duì)任意的恒成立,
令,則,
由(1)知,當(dāng)時(shí), 在區(qū)間上單調(diào)遞減.
因?yàn)?/span>, ,
所以在區(qū)間上存在唯一零點(diǎn),
∴在區(qū)間上也存在唯一零點(diǎn),
設(shè)此零點(diǎn)為,則.
因?yàn)楫?dāng)時(shí), ,
當(dāng)時(shí), ,
所以在區(qū)間上的最小值為,
所以.
又因?yàn)?/span> ,
所以,
所以.
又因?yàn)?/span>為整數(shù),且,
所以的最大值是2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】邊長(zhǎng)為的等邊三角形內(nèi)任一點(diǎn)到三邊距離之和為定值,這個(gè)定值等于;將這個(gè)結(jié)論推廣到空間是:棱長(zhǎng)為的正四面體內(nèi)任一點(diǎn)到各面距離之和等于________________.(具體數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐PABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2,BC=4,PA=2.
(1)求證:AB⊥PC;
(2)在線(xiàn)段PD上,是否存在一點(diǎn)M,使得二面角MACD的大小為45°,如果存在,求BM與平面MAC所成角的正弦值,如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列敘述錯(cuò)誤的是( )
A.已知直線(xiàn)和平面,若點(diǎn),點(diǎn)且,,則
B.若三條直線(xiàn)兩兩相交,則三條直線(xiàn)確定一個(gè)平面
C.若直線(xiàn)不平行于平面,且,則內(nèi)的所有直線(xiàn)與都不相交
D.若直線(xiàn)和不平行,且,,,則l至少與,中的一條相交
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,已知四棱錐的底面為矩形, 底面,且(),, 分別是, 的中點(diǎn).
(1)當(dāng)為何值時(shí),平面平面?并證明你的結(jié)論;
(2)當(dāng)異面直線(xiàn)與所成角的正切值為2時(shí),求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若存在一個(gè)實(shí)數(shù),使得成立,則稱(chēng)為函數(shù)的一個(gè)不動(dòng)點(diǎn),設(shè)函數(shù)(, 為自然對(duì)數(shù)的底數(shù)),定義在上的連續(xù)函數(shù)滿(mǎn)足,且當(dāng)時(shí), .若存在,且為函數(shù)的一個(gè)不動(dòng)點(diǎn),則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中心在坐標(biāo)原點(diǎn),一個(gè)焦點(diǎn)為的橢圓被直線(xiàn)截得的弦的中點(diǎn)的橫坐標(biāo)為.
(1)求此橢圓的方程;
(2)設(shè)直線(xiàn)與橢圓交于兩點(diǎn),且以為對(duì)角線(xiàn)的菱形的一個(gè)頂點(diǎn)為,求面積的最大值及此時(shí)直線(xiàn)的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果的定義域?yàn)?/span>,對(duì)于定義域內(nèi)的任意,存在實(shí)數(shù)使得成立,則稱(chēng)此函數(shù)具有“性質(zhì)”.給出下列命題:
①函數(shù)具有“性質(zhì)”;
②若奇函數(shù)具有“性質(zhì)”,且,則;
③若函數(shù)具有“性質(zhì)”,圖象關(guān)于點(diǎn)成中心對(duì)稱(chēng),且在上單調(diào)遞減,則在上單調(diào)遞減,在上單調(diào)遞增;
④若不恒為零的函數(shù)同時(shí)具有“性質(zhì)”和“性質(zhì)”,且函數(shù)對(duì),都有 成立,則函數(shù)是周期函數(shù).
其中正確的是__________(寫(xiě)出所有正確命題的編號(hào)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在幾何體中,四邊形是菱形,平面,,且,.
(1)證明:平面平面;
(2)若二面角是直二面角,求異面直線(xiàn)與所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com