【題目】下面給出四種說法:
①設(shè)、、分別表示數(shù)據(jù)15、17、14、10、15、17、17、16、14、12的平均數(shù)、中位數(shù)、眾數(shù),則;
②在線性回歸模型中,相關(guān)系數(shù)的絕對值越接近于1,表示兩個變量的相關(guān)性越強;
③繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的組距;
④線性回歸直線不一定過樣本中心點.
其中正確說法的序號是______.
【答案】①②
【解析】
對于①根據(jù)數(shù)據(jù)求得平均數(shù)、中位數(shù)、眾數(shù),即可比較的大小;對于②根據(jù)相關(guān)系數(shù)定義,即可判斷是否正確;對于③,根據(jù)頻率分布直方圖的繪制過程即可判斷;對于④根據(jù)線性回歸方程中的求法,可知必過樣本中心點,即可判斷.
對于①,根據(jù)數(shù)據(jù)可求得平均數(shù)為,從小到大排列可得,所以中位數(shù)為,由數(shù)據(jù)可知眾數(shù)為.即,所以①正確;
對于②根據(jù)相關(guān)系數(shù)的意義,可知當相關(guān)系數(shù)的絕對值越接近于1,表示兩個變量的相關(guān)性越強,所以②正確;
對于③繪制頻率分布直方圖時,各小長方形的面積等于相應(yīng)各組的頻率,所以③錯誤;
對于④根據(jù)線性回歸方程中的求法,可知必過樣本中心點,所以④錯誤.
綜上可知,正確的為①②
故答案為: ①②
科目:高中數(shù)學 來源: 題型:
【題目】有關(guān)部門要了解甲型H1N1流感預防知識在學校的普及情況,命制了一份有10道題的問卷到各學校做問卷調(diào)查.某中學A、B兩個班各被隨機抽取5名學生接受問卷調(diào)查,A班5名學生得分為:5、8、9、9、9,B班5名學生得分為:6、7、8、9、10.
(1)請你判斷A、B兩個班中哪個班的問卷得分要穩(wěn)定一些,并說明你的理由;
(2)求如果把B班5名學生的得分看成一個總體,并用簡單隨機抽樣方法從中抽取樣本容量為2的樣本,求樣本平均數(shù)與總體平均數(shù)之差的絕對值不小于1的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】對于四面體ABCD,給出下列四個命題:
①若AB=AC,BD=CD,則BC⊥AD; ②若AB=CD,AC=BD,則BC⊥AD;
③若AB⊥AC,BD⊥CD,則BC⊥AD;④若AB⊥CD,AC⊥BD,則BC⊥AD;
其中正確的命題的序號是( )
A.①②B.②③C.②④D.①④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)函數(shù),.
(1)當時,函數(shù)有兩個極值點,求的取值范圍;
(2)若在點處的切線與軸平行,且函數(shù)在時,其圖象上每一點處切線的傾斜角均為銳角,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地區(qū)不同身高的未成年男孩的體重平均值如下表:
身高 | 60 | 70 | 80 | 90 | 100 |
體重 | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 |
已知與之間存在很強的線性相關(guān)性,
(1)據(jù)此建立與之間的回歸方程;
(2)若體重超過相同身高男性體重平均值的1.2倍為偏胖,低于0.8倍為偏瘦,那么這個地區(qū)一名身高體重為的在校男生的體重是否正常?
參考數(shù)據(jù):,,
附:對于一組數(shù)據(jù),,…,,其回歸直線中的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】計算機在數(shù)據(jù)處理時使用的是二進制,例如十進制數(shù)1,2,3,4的二進制數(shù)分別表示為1,10,11,100,二進制數(shù)…化為十進制數(shù)的公式為… ,例如二進制數(shù)11等于十進制數(shù),又如二進制數(shù)101等于十進制數(shù),下圖是某同學設(shè)計的將二進制數(shù)11111化為十進制數(shù)的程序框圖,則判斷框內(nèi)應(yīng)填入的條件是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是周期為4的奇函數(shù),且當時,,方程在區(qū)間內(nèi)有唯一解,則方程在區(qū)間上所有解的和為( )
A. B. 036162C. 3053234D. 3055252
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com