3.拋物線y2=2x的焦點(diǎn)坐標(biāo)是($\frac{1}{2}$,0),準(zhǔn)線方程是x=-$\frac{1}{2}$.

分析 利用拋物線的標(biāo)準(zhǔn)方程求解焦點(diǎn)坐標(biāo)以及準(zhǔn)線方程即可.

解答 解:拋物線y2=2x的焦點(diǎn)坐標(biāo)是($\frac{1}{2}$,0);準(zhǔn)線方程是:x=-$\frac{1}{2}$.
故答案為:($\frac{1}{2}$,0);x=-$\frac{1}{2}$.

點(diǎn)評(píng) 本題考查拋物線的簡單性質(zhì)的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)是定義在R上的奇函數(shù),且x≤0時(shí)f(x)=3x-2x+m(m∈R,m為常數(shù)),則f(2)=$-\frac{28}{9}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知函數(shù)$f(x)=sin({wx+ϕ}),({w>0,|ϕ|<\frac{π}{2}})$,其相鄰兩個(gè)最高點(diǎn)之間的距離是π,且函數(shù)$f({x+\frac{π}{12}})$是偶函數(shù),下列判斷正確的是( 。
A.函數(shù)f(x)的最小正周期為2π
B.函數(shù)f(x)在$[{\frac{3π}{4},π}]$上單調(diào)遞增
C.函數(shù)f(x)的圖象關(guān)于直線$x=-\frac{7π}{12}$對(duì)稱
D.函數(shù)f(x)的圖象關(guān)于點(diǎn)$({\frac{π}{12},0})$對(duì)稱-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)的定義域是[0,1],則函數(shù)f(2x)+f(x+$\frac{1}{3}$)的定義域?yàn)椋ā 。?table class="qanwser">A.[-$\frac{1}{3}$,$\frac{2}{3}$]B.[-$\frac{1}{3}$,$\frac{1}{2}$]C.[0,$\frac{1}{2}$]D.[0,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若函數(shù)f(x)=$\left\{\begin{array}{l}({2b-1})x+b-1,x>0\\-{x^2}+({2-b})x,x≤0\end{array}$,在R上為增函數(shù),則實(shí)數(shù)b的取值范圍是( 。
A.$({\frac{1}{2},+∞})$B.[1,2]C.$(\frac{1}{2},2]$D.$(-\frac{1}{2},2]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示,l1,l2是互相垂直的異面直線,MN是它們的公垂線段,點(diǎn)A,B在直線l1上,且位于M點(diǎn)的兩側(cè),C在l2上,AM=BM=NM=CN
(1)求證:異面直線AC與BN垂直;
(2)若四面體ABCN的體積VABCN=9,求異面直線l1,l2之間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)k∈R,若$\frac{{y}^{2}}{k}$-$\frac{{x}^{2}}{k-2}$=1表示焦點(diǎn)在y軸上的雙曲線,則半焦距的取值范圍是($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.α、β是兩個(gè)不重合的平面,a、b是兩條不同直線,在下列條件下,可判定α∥β的是(  )
A.a、b是兩條異面直線且a∥α,b∥α,a∥β,b∥β
B.α內(nèi)有三個(gè)不共線點(diǎn)A、B、C到β的距離相等
C.a、b是α內(nèi)兩條直線,且a∥β,b∥β
D.α、β都平行于直線a、b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如圖是2016年某大學(xué)自主招生面試環(huán)節(jié)中,七位評(píng)委為某考生打出的分?jǐn)?shù)的莖葉圖,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的中位數(shù)和眾數(shù)依次為( 。
A.84,84B.84,85C.86,84D.84,86

查看答案和解析>>

同步練習(xí)冊(cè)答案